[c++] Can a class member function template be virtual?

I have heard that C++ class member function templates can't be virtual. Is this true?

If they can be virtual, what is an example of a scenario in which one would use such a function?

The answer is


In the other answers the proposed template function is a facade and doesn't offer any practical benefit.

  • Template functions are useful for writing code only once using different types.
  • Virtual functions are useful for having a common interface for different classes.

The language doesn't allow virtual template functions but with a workaround it is possible to have both, e.g. one template implementation for each class and a virtual common interface.

It is however necessary to define for each template type combination a dummy virtual wrapper function:

#include <memory>
#include <iostream>
#include <iomanip>

//---------------------------------------------
// Abstract class with virtual functions
class Geometry {
public:
    virtual void getArea(float &area) = 0;
    virtual void getArea(long double &area) = 0;
};

//---------------------------------------------
// Square
class Square : public Geometry {
public:
    float size {1};

    // virtual wrapper functions call template function for square
    virtual void getArea(float &area) { getAreaT(area); }
    virtual void getArea(long double &area) { getAreaT(area); }

private:
    // Template function for squares
    template <typename T>
    void getAreaT(T &area) {
        area = static_cast<T>(size * size);
    }
};

//---------------------------------------------
// Circle
class Circle : public Geometry  {
public:
    float radius {1};

    // virtual wrapper functions call template function for circle
    virtual void getArea(float &area) { getAreaT(area); }
    virtual void getArea(long double &area) { getAreaT(area); }

private:
    // Template function for Circles
    template <typename T>
    void getAreaT(T &area) {
        area = static_cast<T>(radius * radius * 3.1415926535897932385L);
    }
};


//---------------------------------------------
// Main
int main()
{
    // get area of square using template based function T=float
    std::unique_ptr<Geometry> geometry = std::make_unique<Square>();
    float areaSquare;
    geometry->getArea(areaSquare);

    // get area of circle using template based function T=long double
    geometry = std::make_unique<Circle>();
    long double areaCircle;
    geometry->getArea(areaCircle);

    std::cout << std::setprecision(20) << "Square area is " << areaSquare << ", Circle area is " << areaCircle << std::endl;
    return 0;
}

Output:

Square area is 1, Circle area is 3.1415926535897932385

Try it here


From C++ Templates The Complete Guide:

Member function templates cannot be declared virtual. This constraint is imposed because the usual implementation of the virtual function call mechanism uses a fixed-size table with one entry per virtual function. However, the number of instantiations of a member function template is not fixed until the entire program has been translated. Hence, supporting virtual member function templates would require support for a whole new kind of mechanism in C++ compilers and linkers. In contrast, the ordinary members of class templates can be virtual because their number is fixed when a class is instantiated


My current solution is the following (with RTTI disabled - you could use std::type_index, too):

#include <type_traits>
#include <iostream>
#include <tuple>

class Type
{
};

template<typename T>
class TypeImpl : public Type
{

};

template<typename T>
inline Type* typeOf() {
    static Type* typePtr = new TypeImpl<T>();
    return typePtr;
}

/* ------------- */

template<
    typename Calling
    , typename Result = void
    , typename From
    , typename Action
>
inline Result DoComplexDispatch(From* from, Action&& action);

template<typename Cls>
class ChildClasses
{
public:
    using type = std::tuple<>;
};

template<typename... Childs>
class ChildClassesHelper
{
public:
    using type = std::tuple<Childs...>;
};

//--------------------------

class A;
class B;
class C;
class D;

template<>
class ChildClasses<A> : public ChildClassesHelper<B, C, D> {};

template<>
class ChildClasses<B> : public ChildClassesHelper<C, D> {};

template<>
class ChildClasses<C> : public ChildClassesHelper<D> {};

//-------------------------------------------

class A
{
public:
    virtual Type* GetType()
    {
        return typeOf<A>();
    }

    template<
        typename T,
        bool checkType = true
    >
        /*virtual*/void DoVirtualGeneric()
    {
        if constexpr (checkType)
        {
            return DoComplexDispatch<A>(this, [&](auto* other) -> decltype(auto)
                {
                    return other->template DoVirtualGeneric<T, false>();
                });
        }
        std::cout << "A";
    }
};

class B : public A
{
public:
    virtual Type* GetType()
    {
        return typeOf<B>();
    }
    template<
        typename T,
        bool checkType = true
    >
    /*virtual*/void DoVirtualGeneric() /*override*/
    {
        if constexpr (checkType)
        {
            return DoComplexDispatch<B>(this, [&](auto* other) -> decltype(auto)
                {
                    other->template DoVirtualGeneric<T, false>();
                });
        }
        std::cout << "B";
    }
};

class C : public B
{
public:
    virtual Type* GetType() {
        return typeOf<C>();
    }

    template<
        typename T,
        bool checkType = true
    >
    /*virtual*/void DoVirtualGeneric() /*override*/
    {
        if constexpr (checkType)
        {
            return DoComplexDispatch<C>(this, [&](auto* other) -> decltype(auto)
                {
                    other->template DoVirtualGeneric<T, false>();
                });
        }
        std::cout << "C";
    }
};

class D : public C
{
public:
    virtual Type* GetType() {
        return typeOf<D>();
    }
};

int main()
{
    A* a = new A();
    a->DoVirtualGeneric<int>();
}

// --------------------------

template<typename Tuple>
class RestTuple {};

template<
    template<typename...> typename Tuple,
    typename First,
    typename... Rest
>
class RestTuple<Tuple<First, Rest...>> {
public:
    using type = Tuple<Rest...>;
};

// -------------
template<
    typename CandidatesTuple
    , typename Result
    , typename From
    , typename Action
>
inline constexpr Result DoComplexDispatchInternal(From* from, Action&& action, Type* fromType)
{
    using FirstCandidate = std::tuple_element_t<0, CandidatesTuple>;

    if constexpr (std::tuple_size_v<CandidatesTuple> == 1)
    {
        return action(static_cast<FirstCandidate*>(from));
    }
    else {
        if (fromType == typeOf<FirstCandidate>())
        {
            return action(static_cast<FirstCandidate*>(from));
        }
        else {
            return DoComplexDispatchInternal<typename RestTuple<CandidatesTuple>::type, Result>(
                from, action, fromType
            );
        }
    }
}

template<
    typename Calling
    , typename Result
    , typename From
    , typename Action
>
inline Result DoComplexDispatch(From* from, Action&& action)
{
    using ChildsOfCalling = typename ChildClasses<Calling>::type;
    if constexpr (std::tuple_size_v<ChildsOfCalling> == 0)
    {
        return action(static_cast<Calling*>(from));
    }
    else {
        auto fromType = from->GetType();
        using Candidates = decltype(std::tuple_cat(std::declval<std::tuple<Calling>>(), std::declval<ChildsOfCalling>()));
        return DoComplexDispatchInternal<Candidates, Result>(
            from, std::forward<Action>(action), fromType
        );
    }
}

The only thing I don't like is that you have to define/register all child classes.


At least with gcc 5.4 virtual functions could be template members but has to be templates themselves.

#include <iostream>
#include <string>
class first {
protected:
    virtual std::string  a1() { return "a1"; }
    virtual std::string  mixt() { return a1(); }
};

class last {
protected:
    virtual std::string a2() { return "a2"; }
};

template<class T>  class mix: first , T {
    public:
    virtual std::string mixt() override;
};

template<class T> std::string mix<T>::mixt() {
   return a1()+" before "+T::a2();
}

class mix2: public mix<last>  {
    virtual std::string a1() override { return "mix"; }
};

int main() {
    std::cout << mix2().mixt();
    return 0;
}

Outputs

mix before a2
Process finished with exit code 0

The following code can be compiled and runs properly, using MinGW G++ 3.4.5 on Window 7:

#include <iostream>
#include <string>

using namespace std;

template <typename T>
class A{
public:
    virtual void func1(const T& p)
    {
        cout<<"A:"<<p<<endl;
    }
};

template <typename T>
class B
: public A<T>
{
public:
    virtual void func1(const T& p)
    {
        cout<<"A<--B:"<<p<<endl;
    }
};

int main(int argc, char** argv)
{
    A<string> a;
    B<int> b;
    B<string> c;

    A<string>* p = &a;
    p->func1("A<string> a");
    p = dynamic_cast<A<string>*>(&c);
    p->func1("B<string> c");
    B<int>* q = &b;
    q->func1(3);
}

and the output is:

A:A<string> a
A<--B:B<string> c
A<--B:3

And later I added a new class X:

class X
{
public:
    template <typename T>
    virtual void func2(const T& p)
    {
        cout<<"C:"<<p<<endl;
    }
};

When I tried to use class X in main() like this:

X x;
x.func2<string>("X x");

g++ report the following error:

vtempl.cpp:34: error: invalid use of `virtual' in template declaration of `virtu
al void X::func2(const T&)'

So it is obvious that:

  • virtual member function can be used in a class template. It is easy for compiler to construct vtable
  • It is impossible to define a class template member function as virtual, as you can see, it hard to determine function signature and allocate vtable entries.

No, template member functions cannot be virtual.


No they can't. But:

template<typename T>
class Foo {
public:
  template<typename P>
  void f(const P& p) {
    ((T*)this)->f<P>(p);
  }
};

class Bar : public Foo<Bar> {
public:
  template<typename P>
  void f(const P& p) {
    std::cout << p << std::endl;
  }
};

int main() {
  Bar bar;

  Bar *pbar = &bar;
  pbar -> f(1);

  Foo<Bar> *pfoo = &bar;
  pfoo -> f(1);
};

has much the same effect if all you want to do is have a common interface and defer implementation to subclasses.


Virtual Function Tables

Let's begin with some background on virtual function tables and how they work (source):

[20.3] What's the difference between how virtual and non-virtual member functions are called?

Non-virtual member functions are resolved statically. That is, the member function is selected statically (at compile-time) based on the type of the pointer (or reference) to the object.

In contrast, virtual member functions are resolved dynamically (at run-time). That is, the member function is selected dynamically (at run-time) based on the type of the object, not the type of the pointer/reference to that object. This is called "dynamic binding." Most compilers use some variant of the following technique: if the object has one or more virtual functions, the compiler puts a hidden pointer in the object called a "virtual-pointer" or "v-pointer." This v-pointer points to a global table called the "virtual-table" or "v-table."

The compiler creates a v-table for each class that has at least one virtual function. For example, if class Circle has virtual functions for draw() and move() and resize(), there would be exactly one v-table associated with class Circle, even if there were a gazillion Circle objects, and the v-pointer of each of those Circle objects would point to the Circle v-table. The v-table itself has pointers to each of the virtual functions in the class. For example, the Circle v-table would have three pointers: a pointer to Circle::draw(), a pointer to Circle::move(), and a pointer to Circle::resize().

During a dispatch of a virtual function, the run-time system follows the object's v-pointer to the class's v-table, then follows the appropriate slot in the v-table to the method code.

The space-cost overhead of the above technique is nominal: an extra pointer per object (but only for objects that will need to do dynamic binding), plus an extra pointer per method (but only for virtual methods). The time-cost overhead is also fairly nominal: compared to a normal function call, a virtual function call requires two extra fetches (one to get the value of the v-pointer, a second to get the address of the method). None of this runtime activity happens with non-virtual functions, since the compiler resolves non-virtual functions exclusively at compile-time based on the type of the pointer.


My problem, or how I came here

I'm attempting to use something like this now for a cubefile base class with templated optimized load functions which will be implemented differently for different types of cubes (some stored by pixel, some by image, etc).

Some code:

virtual void  LoadCube(UtpBipCube<float> &Cube,long LowerLeftRow=0,long LowerLeftColumn=0,
        long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
virtual void  LoadCube(UtpBipCube<short> &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
        long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
virtual void  LoadCube(UtpBipCube<unsigned short> &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
        long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;

What I'd like it to be, but it won't compile due to a virtual templated combo:

template<class T>
    virtual void  LoadCube(UtpBipCube<T> &Cube,long LowerLeftRow=0,long LowerLeftColumn=0,
            long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;

I ended up moving the template declaration to the class level. This solution would have forced programs to know about specific types of data they would read before they read them, which is unacceptable.

Solution

warning, this isn't very pretty but it allowed me to remove repetitive execution code

1) in the base class

virtual void  LoadCube(UtpBipCube<float> &Cube,long LowerLeftRow=0,long LowerLeftColumn=0,
            long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
virtual void  LoadCube(UtpBipCube<short> &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
            long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
virtual void  LoadCube(UtpBipCube<unsigned short> &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
            long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;

2) and in the child classes

void  LoadCube(UtpBipCube<float> &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
        long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1)
{ LoadAnyCube(Cube,LowerLeftRow,LowerLeftColumn,UpperRightRow,UpperRightColumn,LowerBand,UpperBand); }

void  LoadCube(UtpBipCube<short> &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
        long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1)
{ LoadAnyCube(Cube,LowerLeftRow,LowerLeftColumn,UpperRightRow,UpperRightColumn,LowerBand,UpperBand); }

void  LoadCube(UtpBipCube<unsigned short> &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
        long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1)
{ LoadAnyCube(Cube,LowerLeftRow,LowerLeftColumn,UpperRightRow,UpperRightColumn,LowerBand,UpperBand); }

template<class T>
void  LoadAnyCube(UtpBipCube<T> &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
        long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1);

Note that LoadAnyCube is not declared in the base class.


Here's another stack overflow answer with a work around: need a virtual template member workaround.


C++ doesn't allow virtual template member functions right now. The most likely reason is the complexity of implementing it. Rajendra gives good reason why it can't be done right now but it could be possible with reasonable changes of the standard. Especially working out how many instantiations of a templated function actually exist and building up the vtable seems difficult if you consider the place of the virtual function call. Standards people just have a lot of other things to do right now and C++1x is a lot of work for the compiler writers as well.

When would you need a templated member function? I once came across such a situation where I tried to refactor a hierarchy with a pure virtual base class. It was a poor style for implementing different strategies. I wanted to change the argument of one of the virtual functions to a numeric type and instead of overloading the member function and override every overload in all sub-classes I tried to use virtual template functions (and had to find out they don't exist.)


While an older question that has been answered by many I believe a succinct method, not so different from the others posted, is to use a minor macro to help ease the duplication of class declarations.

// abstract.h

// Simply define the types that each concrete class will use
#define IMPL_RENDER() \
    void render(int a, char *b) override { render_internal<char>(a, b); }   \
    void render(int a, short *b) override { render_internal<short>(a, b); } \
    // ...

class Renderable
{
public:
    // Then, once for each on the abstract
    virtual void render(int a, char *a) = 0;
    virtual void render(int a, short *b) = 0;
    // ...
};

So now, to implement our subclass:

class Box : public Renderable
{
public:
    IMPL_RENDER() // Builds the functions we want

private:
    template<typename T>
    void render_internal(int a, T *b); // One spot for our logic
};

The benefit here is that, when adding a newly supported type, it can all be done from the abstract header and forego possibly rectifying it in multiple source/header files.


To answer the second part of the question:

If they can be virtual, what is an example of a scenario in which one would use such a function?

This is not an unreasonable thing to want to do. For instance, Java (where every method is virtual) has no problems with generic methods.

One example in C++ of wanting a virtual function template is a member function that accepts a generic iterator. Or a member function that accepts a generic function object.

The solution to this problem is to use type erasure with boost::any_range and boost::function, which will allow you to accept a generic iterator or functor without the need to make your function a template.


Templates are all about the compiler generating code at compile-time. Virtual functions are all about the run-time system figuring out which function to call at run-time.

Once the run-time system figured out it would need to call a templatized virtual function, compilation is all done and the compiler cannot generate the appropriate instance anymore. Therefore you cannot have virtual member function templates.

However, there are a few powerful and interesting techniques stemming from combining polymorphism and templates, notably so-called type erasure.


There is a workaround for 'virtual template method' if set of types for the template method is known in advance.

To show the idea, in the example below only two types are used (int and double).

There, a 'virtual' template method (Base::Method) calls corresponding virtual method (one of Base::VMethod) which, in turn, calls template method implementation (Impl::TMethod).

One only needs to implement template method TMethod in derived implementations (AImpl, BImpl) and use Derived<*Impl>.

class Base
{
public:
    virtual ~Base()
    {
    }

    template <typename T>
    T Method(T t)
    {
        return VMethod(t);
    }

private:
    virtual int VMethod(int t) = 0;
    virtual double VMethod(double t) = 0;
};

template <class Impl>
class Derived : public Impl
{
public:
    template <class... TArgs>
    Derived(TArgs&&... args)
        : Impl(std::forward<TArgs>(args)...)
    {
    }

private:
    int VMethod(int t) final
    {
        return Impl::TMethod(t);
    }

    double VMethod(double t) final
    {
        return Impl::TMethod(t);
    }
};

class AImpl : public Base
{
protected:
    AImpl(int p)
        : i(p)
    {
    }

    template <typename T>
    T TMethod(T t)
    {
        return t - i;
    }

private:
    int i;
};

using A = Derived<AImpl>;

class BImpl : public Base
{
protected:
    BImpl(int p)
        : i(p)
    {
    }

    template <typename T>
    T TMethod(T t)
    {
        return t + i;
    }

private:
    int i;
};

using B = Derived<BImpl>;

int main(int argc, const char* argv[])
{
    A a(1);
    B b(1);
    Base* base = nullptr;

    base = &a;
    std::cout << base->Method(1) << std::endl;
    std::cout << base->Method(2.0) << std::endl;

    base = &b;
    std::cout << base->Method(1) << std::endl;
    std::cout << base->Method(2.0) << std::endl;
}

Output:

0
1
2
3

NB: Base::Method is actually surplus for real code (VMethod can be made public and used directly). I added it so it looks like as an actual 'virtual' template method.


Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to templates

*ngIf else if in template 'if' statement in jinja2 template How to create a link to another PHP page Flask raises TemplateNotFound error even though template file exists Application not picking up .css file (flask/python) Django: How can I call a view function from template? Angularjs Template Default Value if Binding Null / Undefined (With Filter) HTML email in outlook table width issue - content is wider than the specified table width How to redirect on another page and pass parameter in url from table? How to check for the type of a template parameter?

Examples related to virtual-functions

Can you write virtual functions / methods in Java? Why do we need virtual functions in C++? Can a class member function template be virtual? Calling virtual functions inside constructors Why do we not have a virtual constructor in C++? Can I call a base class's virtual function if I'm overriding it? Safely override C++ virtual functions What is the difference between an abstract function and a virtual function? Virtual member call in a constructor

Examples related to function-templates

Can a class member function template be virtual?

Examples related to c++-faq

What are the new features in C++17? Why should I use a pointer rather than the object itself? Why is enum class preferred over plain enum? gcc/g++: "No such file or directory" What is an undefined reference/unresolved external symbol error and how do I fix it? When is std::weak_ptr useful? What XML parser should I use in C++? What is a lambda expression in C++11? Why should C++ programmers minimize use of 'new'? Iterator invalidation rules