There is one important scenario that can lead to an outer join being faster than an inner join that has not been discussed yet.
When using an outer join, the optimizer is always free to drop the outer joined table from the execution plan if the join columns are the PK of the outer table, and none of the outer table columns are referenced outside of the outer join itself. For example SELECT A.* FROM A LEFT OUTER JOIN B ON A.KEY=B.KEY
and B.KEY is the PK for B. Both Oracle (I believe I was using release 10) and Sql Server (I used 2008 R2) prune table B from the execution plan.
The same is not necessarily true for an inner join: SELECT A.* FROM A INNER JOIN B ON A.KEY=B.KEY
may or may not require B in the execution plan depending on what constraints exist.
If A.KEY is a nullable foreign key referencing B.KEY, then the optimizer cannot drop B from the plan because it must confirm that a B row exists for every A row.
If A.KEY is a mandatory foreign key referencing B.KEY, then the optimizer is free to drop B from the plan because the constraints guarantee the existence of the row. But just because the optimizer can drop the table from the plan, doesn't mean it will. SQL Server 2008 R2 does NOT drop B from the plan. Oracle 10 DOES drop B from the plan. It is easy to see how the outer join will out-perform the inner join on SQL Server in this case.
This is a trivial example, and not practical for a stand-alone query. Why join to a table if you don't need to?
But this could be a very important design consideration when designing views. Frequently a "do-everything" view is built that joins everything a user might need related to a central table. (Especially if there are naive users doing ad-hoc queries that do not understand the relational model) The view may include all the relevent columns from many tables. But the end users might only access columns from a subset of the tables within the view. If the tables are joined with outer joins, then the optimizer can (and does) drop the un-needed tables from the plan.
It is critical to make sure that the view using outer joins gives the correct results. As Aaronaught has said - you cannot blindly substitute OUTER JOIN for INNER JOIN and expect the same results. But there are times when it can be useful for performance reasons when using views.
One last note - I haven't tested the impact on performance in light of the above, but in theory it seems you should be able to safely replace an INNER JOIN with an OUTER JOIN if you also add the condition <FOREIGN_KEY> IS NOT NULL to the where clause.