[sql] INNER JOIN vs LEFT JOIN performance in SQL Server

There is one important scenario that can lead to an outer join being faster than an inner join that has not been discussed yet.

When using an outer join, the optimizer is always free to drop the outer joined table from the execution plan if the join columns are the PK of the outer table, and none of the outer table columns are referenced outside of the outer join itself. For example SELECT A.* FROM A LEFT OUTER JOIN B ON A.KEY=B.KEY and B.KEY is the PK for B. Both Oracle (I believe I was using release 10) and Sql Server (I used 2008 R2) prune table B from the execution plan.

The same is not necessarily true for an inner join: SELECT A.* FROM A INNER JOIN B ON A.KEY=B.KEY may or may not require B in the execution plan depending on what constraints exist.

If A.KEY is a nullable foreign key referencing B.KEY, then the optimizer cannot drop B from the plan because it must confirm that a B row exists for every A row.

If A.KEY is a mandatory foreign key referencing B.KEY, then the optimizer is free to drop B from the plan because the constraints guarantee the existence of the row. But just because the optimizer can drop the table from the plan, doesn't mean it will. SQL Server 2008 R2 does NOT drop B from the plan. Oracle 10 DOES drop B from the plan. It is easy to see how the outer join will out-perform the inner join on SQL Server in this case.

This is a trivial example, and not practical for a stand-alone query. Why join to a table if you don't need to?

But this could be a very important design consideration when designing views. Frequently a "do-everything" view is built that joins everything a user might need related to a central table. (Especially if there are naive users doing ad-hoc queries that do not understand the relational model) The view may include all the relevent columns from many tables. But the end users might only access columns from a subset of the tables within the view. If the tables are joined with outer joins, then the optimizer can (and does) drop the un-needed tables from the plan.

It is critical to make sure that the view using outer joins gives the correct results. As Aaronaught has said - you cannot blindly substitute OUTER JOIN for INNER JOIN and expect the same results. But there are times when it can be useful for performance reasons when using views.

One last note - I haven't tested the impact on performance in light of the above, but in theory it seems you should be able to safely replace an INNER JOIN with an OUTER JOIN if you also add the condition <FOREIGN_KEY> IS NOT NULL to the where clause.

Examples related to sql

Passing multiple values for same variable in stored procedure SQL permissions for roles Generic XSLT Search and Replace template Access And/Or exclusions Pyspark: Filter dataframe based on multiple conditions Subtracting 1 day from a timestamp date PYODBC--Data source name not found and no default driver specified select rows in sql with latest date for each ID repeated multiple times ALTER TABLE DROP COLUMN failed because one or more objects access this column Create Local SQL Server database

Examples related to sql-server

Passing multiple values for same variable in stored procedure SQL permissions for roles Count the Number of Tables in a SQL Server Database Visual Studio 2017 does not have Business Intelligence Integration Services/Projects ALTER TABLE DROP COLUMN failed because one or more objects access this column Create Local SQL Server database How to create temp table using Create statement in SQL Server? SQL Query Where Date = Today Minus 7 Days How do I pass a list as a parameter in a stored procedure? SQL Server date format yyyymmdd

Examples related to performance

Why is 2 * (i * i) faster than 2 * i * i in Java? What is the difference between spark.sql.shuffle.partitions and spark.default.parallelism? How to check if a key exists in Json Object and get its value Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly? Most efficient way to map function over numpy array The most efficient way to remove first N elements in a list? Fastest way to get the first n elements of a List into an Array Why is "1000000000000000 in range(1000000000000001)" so fast in Python 3? pandas loc vs. iloc vs. at vs. iat? Android Recyclerview vs ListView with Viewholder