[machine-learning] Epoch vs Iteration when training neural networks

To understand the difference between these you must understand the Gradient Descent Algorithm and its Variants.

Before I start with the actual answer, I would like to build some background.

A batch is the complete dataset. Its size is the total number of training examples in the available dataset.

Mini-batch size is the number of examples the learning algorithm processes in a single pass (forward and backward).

A Mini-batch is a small part of the dataset of given mini-batch size.

Iterations is the number of batches of data the algorithm has seen (or simply the number of passes the algorithm has done on the dataset).

Epochs is the number of times a learning algorithm sees the complete dataset. Now, this may not be equal to the number of iterations, as the dataset can also be processed in mini-batches, in essence, a single pass may process only a part of the dataset. In such cases, the number of iterations is not equal to the number of epochs.

In the case of Batch gradient descent, the whole batch is processed on each training pass. Therefore, the gradient descent optimizer results in smoother convergence than Mini-batch gradient descent, but it takes more time. The batch gradient descent is guaranteed to find an optimum if it exists.

Stochastic gradient descent is a special case of mini-batch gradient descent in which the mini-batch size is 1.

Batch gradient descent vs Mini-batch gradient descent

Comparison of batch, stochastic and mini-batch gradient descents.

Examples related to machine-learning

Error in Python script "Expected 2D array, got 1D array instead:"? How to predict input image using trained model in Keras? What is the role of "Flatten" in Keras? How to concatenate two layers in keras? How to save final model using keras? scikit-learn random state in splitting dataset Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? What is the meaning of the word logits in TensorFlow? Can anyone explain me StandardScaler? Can Keras with Tensorflow backend be forced to use CPU or GPU at will?

Examples related to neural-network

How to initialize weights in PyTorch? Keras input explanation: input_shape, units, batch_size, dim, etc What is the role of "Flatten" in Keras? How to concatenate two layers in keras? Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? What is the meaning of the word logits in TensorFlow? How to return history of validation loss in Keras Keras model.summary() result - Understanding the # of Parameters Where do I call the BatchNormalization function in Keras? How to interpret "loss" and "accuracy" for a machine learning model

Examples related to deep-learning

How to initialize weights in PyTorch? What is the use of verbose in Keras while validating the model? How to import keras from tf.keras in Tensorflow? Keras input explanation: input_shape, units, batch_size, dim, etc Pytorch reshape tensor dimension What is the role of "Flatten" in Keras? Best way to save a trained model in PyTorch? Update TensorFlow Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? Keras, How to get the output of each layer?

Examples related to artificial-intelligence

How to get Tensorflow tensor dimensions (shape) as int values? How to compute precision, recall, accuracy and f1-score for the multiclass case with scikit learn? What is the optimal algorithm for the game 2048? Epoch vs Iteration when training neural networks What's is the difference between train, validation and test set, in neural networks? What is the role of the bias in neural networks? What is the difference between supervised learning and unsupervised learning? What are good examples of genetic algorithms/genetic programming solutions? source of historical stock data What algorithm for a tic-tac-toe game can I use to determine the "best move" for the AI?

Examples related to terminology

The differences between initialize, define, declare a variable What is the difference between a web API and a web service? What does "opt" mean (as in the "opt" directory)? Is it an abbreviation? What's the name for hyphen-separated case? What is Bit Masking? What is ADT? (Abstract Data Type) What exactly are iterator, iterable, and iteration? What is a web service endpoint? What is the difference between Cloud, Grid and Cluster? How to explain callbacks in plain english? How are they different from calling one function from another function?