[machine-learning] What is the difference between supervised learning and unsupervised learning?

Machine learning: It explores the study and construction of algorithms that can learn from and make predictions on data.Such algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions expressed as outputs,rather than following strictly static program instructions.

Supervised learning: It is the machine learning task of inferring a function from labeled training data.The training data consist of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.

The computer is presented with example inputs and their desired outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs.Specifically, a supervised learning algorithm takes a known set of input data and known responses to the data (output), and trains a model to generate reasonable predictions for the response to new data.

Unsupervised learning: It is learning without a teacher. One basic thing that you might want to do with data is to visualize it. It is the machine learning task of inferring a function to describe hidden structure from unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised learning from supervised learning. Unsupervised learning uses procedures that attempt to find natural partitions of patterns.

With unsupervised learning there is no feedback based on the prediction results, i.e., there is no teacher to correct you.Under the Unsupervised learning methods no labeled examples are provided and there is no notion of the output during the learning process. As a result, it is up to the learning scheme/model to find patterns or discover the groups of the input data

You should use unsupervised learning methods when you need a large amount of data to train your models, and the willingness and ability to experiment and explore, and of course a challenge that isn’t well solved via more-established methods.With unsupervised learning it is possible to learn larger and more complex models than with supervised learning.Here is a good example on it

.

Examples related to machine-learning

Error in Python script "Expected 2D array, got 1D array instead:"? How to predict input image using trained model in Keras? What is the role of "Flatten" in Keras? How to concatenate two layers in keras? How to save final model using keras? scikit-learn random state in splitting dataset Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? What is the meaning of the word logits in TensorFlow? Can anyone explain me StandardScaler? Can Keras with Tensorflow backend be forced to use CPU or GPU at will?

Examples related to artificial-intelligence

How to get Tensorflow tensor dimensions (shape) as int values? How to compute precision, recall, accuracy and f1-score for the multiclass case with scikit learn? What is the optimal algorithm for the game 2048? Epoch vs Iteration when training neural networks What's is the difference between train, validation and test set, in neural networks? What is the role of the bias in neural networks? What is the difference between supervised learning and unsupervised learning? What are good examples of genetic algorithms/genetic programming solutions? source of historical stock data What algorithm for a tic-tac-toe game can I use to determine the "best move" for the AI?

Examples related to supervised-learning

Scikit-learn: How to obtain True Positive, True Negative, False Positive and False Negative What is the difference between supervised learning and unsupervised learning?

Examples related to unsupervised-learning

What is the difference between supervised learning and unsupervised learning?