[c++] What are access specifiers? Should I inherit with private, protected or public?

what are Access Specifiers?

There are 3 access specifiers for a class/struct/Union in C++. These access specifiers define how the members of the class can be accessed. Of course, any member of a class is accessible within that class(Inside any member function of that same class). Moving ahead to type of access specifiers, they are:

Public - The members declared as Public are accessible from outside the Class through an object of the class.

Protected - The members declared as Protected are accessible from outside the class BUT only in a class derived from it.

Private - These members are only accessible from within the class. No outside Access is allowed.

An Source Code Example:

class MyClass
{
    public:
        int a;
    protected:
        int b;
    private:
        int c;
};

int main()
{
    MyClass obj;
    obj.a = 10;     //Allowed
    obj.b = 20;     //Not Allowed, gives compiler error
    obj.c = 30;     //Not Allowed, gives compiler error
}

Inheritance and Access Specifiers

Inheritance in C++ can be one of the following types:

  • Private Inheritance
  • Public Inheritance
  • Protected inheritance

Here are the member access rules with respect to each of these:

First and most important rule Private members of a class are never accessible from anywhere except the members of the same class.

Public Inheritance:

All Public members of the Base Class become Public Members of the derived class &
All Protected members of the Base Class become Protected Members of the Derived Class.

i.e. No change in the Access of the members. The access rules we discussed before are further then applied to these members.

Code Example:

Class Base
{
    public:
        int a;
    protected:
        int b;
    private:
        int c;
};

class Derived:public Base
{
    void doSomething()
    {
        a = 10;  //Allowed 
        b = 20;  //Allowed
        c = 30;  //Not Allowed, Compiler Error
    }
};

int main()
{
    Derived obj;
    obj.a = 10;  //Allowed
    obj.b = 20;  //Not Allowed, Compiler Error
    obj.c = 30;  //Not Allowed, Compiler Error

}

Private Inheritance:

All Public members of the Base Class become Private Members of the Derived class &
All Protected members of the Base Class become Private Members of the Derived Class.

An code Example:

Class Base
{
    public:
      int a;
    protected:
      int b;
    private:
      int c;
};

class Derived:private Base   //Not mentioning private is OK because for classes it  defaults to private 
{
    void doSomething()
    {
        a = 10;  //Allowed 
        b = 20;  //Allowed
        c = 30;  //Not Allowed, Compiler Error
    }
};

class Derived2:public Derived
{
    void doSomethingMore()
    {
        a = 10;  //Not Allowed, Compiler Error, a is private member of Derived now
        b = 20;  //Not Allowed, Compiler Error, b is private member of Derived now
        c = 30;  //Not Allowed, Compiler Error
    }
};

int main()
{
    Derived obj;
    obj.a = 10;  //Not Allowed, Compiler Error
    obj.b = 20;  //Not Allowed, Compiler Error
    obj.c = 30;  //Not Allowed, Compiler Error

}

Protected Inheritance:

All Public members of the Base Class become Protected Members of the derived class &
All Protected members of the Base Class become Protected Members of the Derived Class.

A Code Example:

Class Base
{
    public:
        int a;
    protected:
        int b;
    private:
        int c;
};

class Derived:protected Base  
{
    void doSomething()
    {
        a = 10;  //Allowed 
        b = 20;  //Allowed
        c = 30;  //Not Allowed, Compiler Error
    }
};

class Derived2:public Derived
{
    void doSomethingMore()
    {
        a = 10;  //Allowed, a is protected member inside Derived & Derived2 is public derivation from Derived, a is now protected member of Derived2
        b = 20;  //Allowed, b is protected member inside Derived & Derived2 is public derivation from Derived, b is now protected member of Derived2
        c = 30;  //Not Allowed, Compiler Error
    }
};

int main()
{
    Derived obj;
    obj.a = 10;  //Not Allowed, Compiler Error
    obj.b = 20;  //Not Allowed, Compiler Error
    obj.c = 30;  //Not Allowed, Compiler Error
}

Remember the same access rules apply to the classes and members down the inheritance hierarchy.


Important points to note:

- Access Specification is per-Class not per-Object

Note that the access specification C++ work on per-Class basis and not per-object basis.
A good example of this is that in a copy constructor or Copy Assignment operator function, all the members of the object being passed can be accessed.

- A Derived class can only access members of its own Base class

Consider the following code example:

class Myclass
{ 
    protected: 
       int x; 
}; 

class derived : public Myclass
{
    public: 
        void f( Myclass& obj ) 
        { 
            obj.x = 5; 
        } 
};

int main()
{
    return 0;
}

It gives an compilation error:

prog.cpp:4: error: ‘int Myclass::x’ is protected

Because the derived class can only access members of its own Base Class. Note that the object obj being passed here is no way related to the derived class function in which it is being accessed, it is an altogether different object and hence derived member function cannot access its members.


What is a friend? How does friend affect access specification rules?

You can declare a function or class as friend of another class. When you do so the access specification rules do not apply to the friended class/function. The class or function can access all the members of that particular class.

So do friends break Encapsulation?

No they don't, On the contrary they enhance Encapsulation!

friendship is used to indicate a intentional strong coupling between two entities.
If there exists a special relationship between two entities such that one needs access to others private or protected members but You do not want everyone to have access by using the public access specifier then you should use friendship.

Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to class

String method cannot be found in a main class method Class constructor type in typescript? ReactJS - Call One Component Method From Another Component How do I declare a model class in my Angular 2 component using TypeScript? When to use Interface and Model in TypeScript / Angular Swift Error: Editor placeholder in source file Declaring static constants in ES6 classes? Creating a static class with no instances In R, dealing with Error: ggplot2 doesn't know how to deal with data of class numeric Static vs class functions/variables in Swift classes?

Examples related to private

Private class declaration Python read-only property What is the use of a private static variable in Java? How to access private data members outside the class without making "friend"s? JUnit Testing private variables? What are access specifiers? Should I inherit with private, protected or public? Do subclasses inherit private fields? What is the difference between public, private, and protected? Internal vs. Private Access Modifiers Private Variables and Methods in Python

Examples related to protected

What are access specifiers? Should I inherit with private, protected or public? What is the difference between public, private, and protected? What is the difference between private and protected members of C++ classes? What is the difference between public, protected, package-private and private in Java?