[python] Multiple linear regression in Python

I can't seem to find any python libraries that do multiple regression. The only things I find only do simple regression. I need to regress my dependent variable (y) against several independent variables (x1, x2, x3, etc.).

For example, with this data:

print 'y        x1      x2       x3       x4      x5     x6       x7'
for t in texts:
    print "{:>7.1f}{:>10.2f}{:>9.2f}{:>9.2f}{:>10.2f}{:>7.2f}{:>7.2f}{:>9.2f}" /
   .format(t.y,t.x1,t.x2,t.x3,t.x4,t.x5,t.x6,t.x7)

(output for above:)

      y        x1       x2       x3        x4     x5     x6       x7
   -6.0     -4.95    -5.87    -0.76     14.73   4.02   0.20     0.45
   -5.0     -4.55    -4.52    -0.71     13.74   4.47   0.16     0.50
  -10.0    -10.96   -11.64    -0.98     15.49   4.18   0.19     0.53
   -5.0     -1.08    -3.36     0.75     24.72   4.96   0.16     0.60
   -8.0     -6.52    -7.45    -0.86     16.59   4.29   0.10     0.48
   -3.0     -0.81    -2.36    -0.50     22.44   4.81   0.15     0.53
   -6.0     -7.01    -7.33    -0.33     13.93   4.32   0.21     0.50
   -8.0     -4.46    -7.65    -0.94     11.40   4.43   0.16     0.49
   -8.0    -11.54   -10.03    -1.03     18.18   4.28   0.21     0.55

How would I regress these in python, to get the linear regression formula:

Y = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + +a7x7 + c

This question is related to python numpy statistics scipy linear-regression

The answer is


Here is a little work around that I created. I checked it with R and it works correct.

import numpy as np
import statsmodels.api as sm

y = [1,2,3,4,3,4,5,4,5,5,4,5,4,5,4,5,6,5,4,5,4,3,4]

x = [
     [4,2,3,4,5,4,5,6,7,4,8,9,8,8,6,6,5,5,5,5,5,5,5],
     [4,1,2,3,4,5,6,7,5,8,7,8,7,8,7,8,7,7,7,7,7,6,5],
     [4,1,2,5,6,7,8,9,7,8,7,8,7,7,7,7,7,7,6,6,4,4,4]
     ]

def reg_m(y, x):
    ones = np.ones(len(x[0]))
    X = sm.add_constant(np.column_stack((x[0], ones)))
    for ele in x[1:]:
        X = sm.add_constant(np.column_stack((ele, X)))
    results = sm.OLS(y, X).fit()
    return results

Result:

print reg_m(y, x).summary()

Output:

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.535
Model:                            OLS   Adj. R-squared:                  0.461
Method:                 Least Squares   F-statistic:                     7.281
Date:                Tue, 19 Feb 2013   Prob (F-statistic):            0.00191
Time:                        21:51:28   Log-Likelihood:                -26.025
No. Observations:                  23   AIC:                             60.05
Df Residuals:                      19   BIC:                             64.59
Df Model:                           3                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1             0.2424      0.139      1.739      0.098        -0.049     0.534
x2             0.2360      0.149      1.587      0.129        -0.075     0.547
x3            -0.0618      0.145     -0.427      0.674        -0.365     0.241
const          1.5704      0.633      2.481      0.023         0.245     2.895

==============================================================================
Omnibus:                        6.904   Durbin-Watson:                   1.905
Prob(Omnibus):                  0.032   Jarque-Bera (JB):                4.708
Skew:                          -0.849   Prob(JB):                       0.0950
Kurtosis:                       4.426   Cond. No.                         38.6

pandas provides a convenient way to run OLS as given in this answer:

Run an OLS regression with Pandas Data Frame


You can use numpy.linalg.lstsq:

import numpy as np

y = np.array([-6, -5, -10, -5, -8, -3, -6, -8, -8])
X = np.array(
    [
        [-4.95, -4.55, -10.96, -1.08, -6.52, -0.81, -7.01, -4.46, -11.54],
        [-5.87, -4.52, -11.64, -3.36, -7.45, -2.36, -7.33, -7.65, -10.03],
        [-0.76, -0.71, -0.98, 0.75, -0.86, -0.50, -0.33, -0.94, -1.03],
        [14.73, 13.74, 15.49, 24.72, 16.59, 22.44, 13.93, 11.40, 18.18],
        [4.02, 4.47, 4.18, 4.96, 4.29, 4.81, 4.32, 4.43, 4.28],
        [0.20, 0.16, 0.19, 0.16, 0.10, 0.15, 0.21, 0.16, 0.21],
        [0.45, 0.50, 0.53, 0.60, 0.48, 0.53, 0.50, 0.49, 0.55],
    ]
)
X = X.T  # transpose so input vectors are along the rows
X = np.c_[X, np.ones(X.shape[0])]  # add bias term
beta_hat = np.linalg.lstsq(X, y, rcond=None)[0]
print(beta_hat)

Result:

[ -0.49104607   0.83271938   0.0860167    0.1326091    6.85681762  22.98163883 -41.08437805 -19.08085066]

You can see the estimated output with:

print(np.dot(X,beta_hat))

Result:

[ -5.97751163,  -5.06465759, -10.16873217,  -4.96959788,  -7.96356915,  -3.06176313,  -6.01818435,  -7.90878145,  -7.86720264]

Once you convert your data to a pandas dataframe (df),

import statsmodels.formula.api as smf
lm = smf.ols(formula='y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7', data=df).fit()
print(lm.params)

The intercept term is included by default.

See this notebook for more examples.


Just to clarify, the example you gave is multiple linear regression, not multivariate linear regression refer. Difference:

The very simplest case of a single scalar predictor variable x and a single scalar response variable y is known as simple linear regression. The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as multivariable linear regression. Nearly all real-world regression models involve multiple predictors, and basic descriptions of linear regression are often phrased in terms of the multiple regression model. Note, however, that in these cases the response variable y is still a scalar. Another term multivariate linear regression refers to cases where y is a vector, i.e., the same as general linear regression. The difference between multivariate linear regression and multivariable linear regression should be emphasized as it causes much confusion and misunderstanding in the literature.

In short:

  • multiple linear regression: the response y is a scalar.
  • multivariate linear regression: the response y is a vector.

(Another source.)


Here is an alternative and basic method:

from patsy import dmatrices
import statsmodels.api as sm

y,x = dmatrices("y_data ~ x_1 + x_2 ", data = my_data)
### y_data is the name of the dependent variable in your data ### 
model_fit = sm.OLS(y,x)
results = model_fit.fit()
print(results.summary())

Instead of sm.OLS you can also use sm.Logit or sm.Probit and etc.


Finding a linear model such as this one can be handled with OpenTURNS.

In OpenTURNS this is done with the LinearModelAlgorithmclass which creates a linear model from numerical samples. To be more specific, it builds the following linear model :

Y = a0 + a1.X1 + ... + an.Xn + epsilon,

where the error epsilon is gaussian with zero mean and unit variance. Assuming your data is in a csv file, here is a simple script to get the regression coefficients ai :

from __future__ import print_function
import pandas as pd
import openturns as ot

# Assuming the data is a csv file with the given structure                          
# Y X1 X2 .. X7
df = pd.read_csv("./data.csv", sep="\s+")

# Build a sample from the pandas dataframe
sample = ot.Sample(df.values)

# The observation points are in the first column (dimension 1)
Y = sample[:, 0]

# The input vector (X1,..,X7) of dimension 7
X = sample[:, 1::]

# Build a Linear model approximation
result = ot.LinearModelAlgorithm(X, Y).getResult()

# Get the coefficients ai
print("coefficients of the linear regression model = ", result.getCoefficients())

You can then easily get the confidence intervals with the following call :

# Get the confidence intervals at 90% of the ai coefficients
print(
    "confidence intervals of the coefficients = ",
    ot.LinearModelAnalysis(result).getCoefficientsConfidenceInterval(0.9),
)

You may find a more detailed example in the OpenTURNS examples.


I think this may the most easy way to finish this work:

from random import random
from pandas import DataFrame
from statsmodels.api import OLS
lr = lambda : [random() for i in range(100)]
x = DataFrame({'x1': lr(), 'x2':lr(), 'x3':lr()})
x['b'] = 1
y = x.x1 + x.x2 * 2 + x.x3 * 3 + 4

print x.head()

         x1        x2        x3  b
0  0.433681  0.946723  0.103422  1
1  0.400423  0.527179  0.131674  1
2  0.992441  0.900678  0.360140  1
3  0.413757  0.099319  0.825181  1
4  0.796491  0.862593  0.193554  1

print y.head()

0    6.637392
1    5.849802
2    7.874218
3    7.087938
4    7.102337
dtype: float64

model = OLS(y, x)
result = model.fit()
print result.summary()

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       1.000
Model:                            OLS   Adj. R-squared:                  1.000
Method:                 Least Squares   F-statistic:                 5.859e+30
Date:                Wed, 09 Dec 2015   Prob (F-statistic):               0.00
Time:                        15:17:32   Log-Likelihood:                 3224.9
No. Observations:                 100   AIC:                            -6442.
Df Residuals:                      96   BIC:                            -6431.
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1             1.0000   8.98e-16   1.11e+15      0.000         1.000     1.000
x2             2.0000   8.28e-16   2.41e+15      0.000         2.000     2.000
x3             3.0000   8.34e-16    3.6e+15      0.000         3.000     3.000
b              4.0000   8.51e-16    4.7e+15      0.000         4.000     4.000
==============================================================================
Omnibus:                        7.675   Durbin-Watson:                   1.614
Prob(Omnibus):                  0.022   Jarque-Bera (JB):                3.118
Skew:                           0.045   Prob(JB):                        0.210
Kurtosis:                       2.140   Cond. No.                         6.89
==============================================================================

try a generalized linear model with a gaussian family

y = np.array([-6, -5, -10, -5, -8, -3, -6, -8, -8])
X = np.array([
    [-4.95, -4.55, -10.96, -1.08, -6.52, -0.81, -7.01, -4.46, -11.54],
    [-5.87, -4.52, -11.64, -3.36, -7.45, -2.36, -7.33, -7.65, -10.03],
    [-0.76, -0.71, -0.98, 0.75, -0.86, -0.50, -0.33, -0.94, -1.03],
    [14.73, 13.74, 15.49, 24.72, 16.59, 22.44, 13.93, 11.40, 18.18],
    [4.02, 4.47, 4.18, 4.96, 4.29, 4.81, 4.32, 4.43, 4.28],
    [0.20, 0.16, 0.19, 0.16, 0.10, 0.15, 0.21, 0.16, 0.21],
    [0.45, 0.50, 0.53, 0.60, 0.48, 0.53, 0.50, 0.49, 0.55],
])
X=zip(*reversed(X))

df=pd.DataFrame({'X':X,'y':y})
columns=7
for i in range(0,columns):
    df['X'+str(i)]=df.apply(lambda row: row['X'][i],axis=1)

df=df.drop('X',axis=1)
print(df)


#model_formula='y ~ X0+X1+X2+X3+X4+X5+X6'
model_formula='y ~ X0'

model_family = sm.families.Gaussian()
model_fit = glm(formula = model_formula, 
             data = df, 
             family = model_family).fit()

print(model_fit.summary())

# Extract coefficients from the fitted model wells_fit
#print(model_fit.params)
intercept, slope = model_fit.params

# Print coefficients
print('Intercept =', intercept)
print('Slope =', slope)

# Extract and print confidence intervals
print(model_fit.conf_int())

df2=pd.DataFrame()
df2['X0']=np.linspace(0.50,0.70,50)

df3=pd.DataFrame()
df3['X1']=np.linspace(0.20,0.60,50)

prediction0=model_fit.predict(df2)
#prediction1=model_fit.predict(df3)

plt.plot(df2['X0'],prediction0,label='X0')
plt.ylabel("y")
plt.xlabel("X0")
plt.show()

Multiple Linear Regression can be handled using the sklearn library as referenced above. I'm using the Anaconda install of Python 3.6.

Create your model as follows:

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X, y)

# display coefficients
print(regressor.coef_)

Use scipy.optimize.curve_fit. And not only for linear fit.

from scipy.optimize import curve_fit
import scipy

def fn(x, a, b, c):
    return a + b*x[0] + c*x[1]

# y(x0,x1) data:
#    x0=0 1 2
# ___________
# x1=0 |0 1 2
# x1=1 |1 2 3
# x1=2 |2 3 4

x = scipy.array([[0,1,2,0,1,2,0,1,2,],[0,0,0,1,1,1,2,2,2]])
y = scipy.array([0,1,2,1,2,3,2,3,4])
popt, pcov = curve_fit(fn, x, y)
print popt

You can use the function below and pass it a DataFrame:

def linear(x, y=None, show=True):
    """
    @param x: pd.DataFrame
    @param y: pd.DataFrame or pd.Series or None
              if None, then use last column of x as y
    @param show: if show regression summary
    """
    import statsmodels.api as sm

    xy = sm.add_constant(x if y is None else pd.concat([x, y], axis=1))
    res = sm.OLS(xy.ix[:, -1], xy.ix[:, :-1], missing='drop').fit()

    if show: print res.summary()
    return res

You can use numpy.linalg.lstsq


Scikit-learn is a machine learning library for Python which can do this job for you. Just import sklearn.linear_model module into your script.

Find the code template for Multiple Linear Regression using sklearn in Python:

import numpy as np
import matplotlib.pyplot as plt #to plot visualizations
import pandas as pd

# Importing the dataset
df = pd.read_csv(<Your-dataset-path>)
# Assigning feature and target variables
X = df.iloc[:,:-1]
y = df.iloc[:,-1]

# Use label encoders, if you have any categorical variable
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
X['<column-name>'] = labelencoder.fit_transform(X['<column-name>'])

from sklearn.preprocessing import OneHotEncoder
onehotencoder = OneHotEncoder(categorical_features = ['<index-value>'])
X = onehotencoder.fit_transform(X).toarray()

# Avoiding the dummy variable trap
X = X[:,1:] # Usually done by the algorithm itself

#Spliting the data into test and train set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, random_state = 0, test_size = 0.2)

# Fitting the model
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

# Predicting the test set results
y_pred = regressor.predict(X_test)

That's it. You can use this code as a template for implementing Multiple Linear Regression in any dataset. For a better understanding with an example, Visit: Linear Regression with an example


Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to numpy

Unable to allocate array with shape and data type How to fix 'Object arrays cannot be loaded when allow_pickle=False' for imdb.load_data() function? Numpy, multiply array with scalar TypeError: only integer scalar arrays can be converted to a scalar index with 1D numpy indices array Could not install packages due to a "Environment error :[error 13]: permission denied : 'usr/local/bin/f2py'" Pytorch tensor to numpy array Numpy Resize/Rescale Image what does numpy ndarray shape do? How to round a numpy array? numpy array TypeError: only integer scalar arrays can be converted to a scalar index

Examples related to statistics

Function to calculate R2 (R-squared) in R pandas: find percentile stats of a given column What exactly does numpy.exp() do? Find p-value (significance) in scikit-learn LinearRegression How to plot ROC curve in Python Pandas - Compute z-score for all columns Calculating percentile of dataset column How to normalize an array in NumPy to a unit vector? How to find row number of a value in R code np.mean() vs np.average() in Python NumPy?

Examples related to scipy

Reading images in python Numpy Resize/Rescale Image How to get the indices list of all NaN value in numpy array? ImportError: cannot import name NUMPY_MKL numpy.where() detailed, step-by-step explanation / examples Scikit-learn train_test_split with indices Matplotlib: Specify format of floats for tick labels Installing NumPy and SciPy on 64-bit Windows (with Pip) Can't install Scipy through pip Plotting a fast Fourier transform in Python

Examples related to linear-regression

Accuracy Score ValueError: Can't Handle mix of binary and continuous target TensorFlow: "Attempting to use uninitialized value" in variable initialization gradient descent using python and numpy Adding a regression line on a ggplot How to calculate the 95% confidence interval for the slope in a linear regression model in R What is the difference between linear regression and logistic regression? Multiple linear regression in Python Add regression line equation and R^2 on graph Linear regression with matplotlib / numpy How to force R to use a specified factor level as reference in a regression?