[machine-learning] What is the difference between linear regression and logistic regression?

The basic difference :

Linear regression is basically a regression model which means its will give a non discreet/continuous output of a function. So this approach gives the value. For example : given x what is f(x)

For example given a training set of different factors and the price of a property after training we can provide the required factors to determine what will be the property price.

Logistic regression is basically a binary classification algorithm which means that here there will be discreet valued output for the function . For example : for a given x if f(x)>threshold classify it to be 1 else classify it to be 0.

For example given a set of brain tumour size as training data we can use the size as input to determine whether its a benine or malignant tumour. Therefore here the output is discreet either 0 or 1.

*here the function is basically the hypothesis function

Examples related to machine-learning

Error in Python script "Expected 2D array, got 1D array instead:"? How to predict input image using trained model in Keras? What is the role of "Flatten" in Keras? How to concatenate two layers in keras? How to save final model using keras? scikit-learn random state in splitting dataset Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? What is the meaning of the word logits in TensorFlow? Can anyone explain me StandardScaler? Can Keras with Tensorflow backend be forced to use CPU or GPU at will?

Examples related to data-mining

What is the difference between linear regression and logistic regression? Difference between classification and clustering in data mining? Calculate AUC in R? Can someone give an example of cosine similarity, in a very simple, graphical way?

Examples related to linear-regression

Accuracy Score ValueError: Can't Handle mix of binary and continuous target TensorFlow: "Attempting to use uninitialized value" in variable initialization gradient descent using python and numpy Adding a regression line on a ggplot How to calculate the 95% confidence interval for the slope in a linear regression model in R What is the difference between linear regression and logistic regression? Multiple linear regression in Python Add regression line equation and R^2 on graph Linear regression with matplotlib / numpy How to force R to use a specified factor level as reference in a regression?