After reading all the answers and comments on this question, I thought to do a small experiment.
I generated 50,000 random booleans and called sum
and count
on them.
Here are my results:
>>> a = [bool(random.getrandbits(1)) for x in range(50000)]
>>> len(a)
50000
>>> a.count(False)
24884
>>> a.count(True)
25116
>>> def count_it(a):
... curr = time.time()
... counting = a.count(True)
... print("Count it = " + str(time.time() - curr))
... return counting
...
>>> def sum_it(a):
... curr = time.time()
... counting = sum(a)
... print("Sum it = " + str(time.time() - curr))
... return counting
...
>>> count_it(a)
Count it = 0.00121307373046875
25015
>>> sum_it(a)
Sum it = 0.004102230072021484
25015
Just to be sure, I repeated it several more times:
>>> count_it(a)
Count it = 0.0013530254364013672
25015
>>> count_it(a)
Count it = 0.0014507770538330078
25015
>>> count_it(a)
Count it = 0.0013344287872314453
25015
>>> sum_it(a)
Sum it = 0.003480195999145508
25015
>>> sum_it(a)
Sum it = 0.0035257339477539062
25015
>>> sum_it(a)
Sum it = 0.003350496292114258
25015
>>> sum_it(a)
Sum it = 0.003744363784790039
25015
And as you can see, count
is 3 times faster than sum
. So I would suggest to use count
as I did in count_it
.
Python version: 3.6.7
CPU cores: 4
RAM size: 16 GB
OS: Ubuntu 18.04.1 LTS