[python] How can I get list of values from dict?

There should be one - and preferably only one - obvious way to do it.

Therefore list(dictionary.values()) is the one way.

Yet, considering Python3, what is quicker?

[*L] vs. [].extend(L) vs. list(L)

small_ds = {x: str(x+42) for x in range(10)}
small_df = {x: float(x+42) for x in range(10)}

print('Small Dict(str)')
%timeit [*small_ds.values()]
%timeit [].extend(small_ds.values())
%timeit list(small_ds.values())

print('Small Dict(float)')
%timeit [*small_df.values()]
%timeit [].extend(small_df.values())
%timeit list(small_df.values())

big_ds = {x: str(x+42) for x in range(1000000)}
big_df = {x: float(x+42) for x in range(1000000)}

print('Big Dict(str)')
%timeit [*big_ds.values()]
%timeit [].extend(big_ds.values())
%timeit list(big_ds.values())

print('Big Dict(float)')
%timeit [*big_df.values()]
%timeit [].extend(big_df.values())
%timeit list(big_df.values())
Small Dict(str)
256 ns ± 3.37 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
338 ns ± 0.807 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
336 ns ± 1.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Small Dict(float)
268 ns ± 0.297 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
343 ns ± 15.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
336 ns ± 0.68 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Big Dict(str)
17.5 ms ± 142 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
16.5 ms ± 338 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
16.2 ms ± 19.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Big Dict(float)
13.2 ms ± 41 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
13.1 ms ± 919 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
12.8 ms ± 578 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Done on Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz.

# Name                    Version                   Build
ipython                   7.5.0            py37h24bf2e0_0

The result

  1. For small dictionaries * operator is quicker
  2. For big dictionaries where it matters list() is maybe slightly quicker

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to list

Convert List to Pandas Dataframe Column Python find elements in one list that are not in the other Sorting a list with stream.sorted() in Java Python Loop: List Index Out of Range How to combine two lists in R How do I multiply each element in a list by a number? Save a list to a .txt file The most efficient way to remove first N elements in a list? TypeError: list indices must be integers or slices, not str Parse JSON String into List<string>

Examples related to dictionary

JS map return object python JSON object must be str, bytes or bytearray, not 'dict Python update a key in dict if it doesn't exist How to update the value of a key in a dictionary in Python? How to map an array of objects in React C# Dictionary get item by index Are dictionaries ordered in Python 3.6+? Split / Explode a column of dictionaries into separate columns with pandas Writing a dictionary to a text file? enumerate() for dictionary in python