For identifying NaN
values use boolean indexing
:
print(df[df['x'].isnull()])
Then for removing all non-numeric values use to_numeric
with parameter errors='coerce'
- to replace non-numeric values to NaN
s:
df['x'] = pd.to_numeric(df['x'], errors='coerce')
And for remove all rows with NaN
s in column x
use dropna
:
df = df.dropna(subset=['x'])
Last convert values to int
s:
df['x'] = df['x'].astype(int)