Since already there are many answers for the question but none of them shows the breakdown of Inversion Control term I see an opportunity to give a more concise and useful answer.
Inversion of Control is a pattern that implements the Dependency Inversion Principle (DIP). DIP states the following: 1. High-level modules should not depend on low-level modules. Both should depend on abstractions (e.g. interfaces). 2. Abstractions should not depend on details. Details (concrete implementations) should depend on abstractions.
There are three types of Inversion of Control:
Interface Inversion Providers shouldn’t define an interface. Instead, the consumer should define the interface and providers must implement it. Interface Inversion allows eliminating the necessity to modify the consumer each time when a new provider added.
Flow Inversion Changes control of the flow. For example, you have a console application where you asked to enter many parameters and after each entered parameter you are forced to press Enter. You can apply Flow Inversion here and implement a desktop application where the user can choose the sequence of parameters’ entering, the user can edit parameters, and at the final step, the user needs to press Enter only once.
Creation Inversion It can be implemented by the following patterns: Factory Pattern, Service Locator, and Dependency Injection. Creation Inversion helps to eliminate dependencies between types moving the process of dependency objects creation outside of the type that uses these dependency objects. Why dependencies are bad? Here are a couple of examples: direct creation of a new object in your code makes testing harder; it is impossible to change references in assemblies without recompilation (OCP principle violation); you can’t easily replace a desktop-UI by a web-UI.