Conversion from signed to unsigned does not necessarily just copy or reinterpret the representation of the signed value. Quoting the C standard (C99 6.3.1.3):
When a value with integer type is converted to another integer type other than _Bool, if the value can be represented by the new type, it is unchanged.
Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting one more than the maximum value that can be represented in the new type until the value is in the range of the new type.
Otherwise, the new type is signed and the value cannot be represented in it; either the result is implementation-defined or an implementation-defined signal is raised.
For the two's complement representation that's nearly universal these days, the rules do correspond to reinterpreting the bits. But for other representations (sign-and-magnitude or ones' complement), the C implementation must still arrange for the same result, which means that the conversion can't just copy the bits. For example, (unsigned)-1 == UINT_MAX, regardless of the representation.
In general, conversions in C are defined to operate on values, not on representations.
To answer the original question:
unsigned int u = 1234;
int i = -5678;
unsigned int result = u + i;
The value of i is converted to unsigned int, yielding UINT_MAX + 1 - 5678
. This value is then added to the unsigned value 1234, yielding UINT_MAX + 1 - 4444
.
(Unlike unsigned overflow, signed overflow invokes undefined behavior. Wraparound is common, but is not guaranteed by the C standard -- and compiler optimizations can wreak havoc on code that makes unwarranted assumptions.)