[algorithm] How to implement a queue using two stacks?

A - How To Reverse A Stack

To understand how to construct a queue using two stacks, you should understand how to reverse a stack crystal clear. Remember how stack works, it is very similar to the dish stack on your kitchen. The last washed dish will be on the top of the clean stack, which is called as Last In First Out (LIFO) in computer science.

Lets imagine our stack like a bottle as below;

enter image description here

If we push integers 1,2,3 respectively, then 3 will be on the top of the stack. Because 1 will be pushed first, then 2 will be put on the top of 1. Lastly, 3 will be put on the top of the stack and latest state of our stack represented as a bottle will be as below;

enter image description here

Now we have our stack represented as a bottle is populated with values 3,2,1. And we want to reverse the stack so that the top element of the stack will be 1 and bottom element of the stack will be 3. What we can do ? We can take the bottle and hold it upside down so that all the values should reverse in order ?

enter image description here

Yes we can do that, but that's a bottle. To do the same process, we need to have a second stack that which is going to store the first stack elements in reverse order. Let's put our populated stack to the left and our new empty stack to the right. To reverse the order of the elements, we are going to pop each element from left stack, and push them to the right stack. You can see what happens as we do so on the image below;

enter image description here

So we know how to reverse a stack.

B - Using Two Stacks As A Queue

On previous part, I've explained how can we reverse the order of stack elements. This was important, because if we push and pop elements to the stack, the output will be exactly in reverse order of a queue. Thinking on an example, let's push the array of integers {1, 2, 3, 4, 5} to a stack. If we pop the elements and print them until the stack is empty, we will get the array in the reverse order of pushing order, which will be {5, 4, 3, 2, 1} Remember that for the same input, if we dequeue the queue until the queue is empty, the output will be {1, 2, 3, 4, 5}. So it is obvious that for the same input order of elements, output of the queue is exactly reverse of the output of a stack. As we know how to reverse a stack using an extra stack, we can construct a queue using two stacks.

Our queue model will consist of two stacks. One stack will be used for enqueue operation (stack #1 on the left, will be called as Input Stack), another stack will be used for the dequeue operation (stack #2 on the right, will be called as Output Stack). Check out the image below;

enter image description here

Our pseudo-code is as below;


Enqueue Operation

Push every input element to the Input Stack

Dequeue Operation

If ( Output Stack is Empty)
    pop every element in the Input Stack
    and push them to the Output Stack until Input Stack is Empty

pop from Output Stack

Let's enqueue the integers {1, 2, 3} respectively. Integers will be pushed on the Input Stack (Stack #1) which is located on the left;

enter image description here

Then what will happen if we execute a dequeue operation? Whenever a dequeue operation is executed, queue is going to check if the Output Stack is empty or not(see the pseudo-code above) If the Output Stack is empty, then the Input Stack is going to be extracted on the output so the elements of Input Stack will be reversed. Before returning a value, the state of the queue will be as below;

enter image description here

Check out the order of elements in the Output Stack (Stack #2). It's obvious that we can pop the elements from the Output Stack so that the output will be same as if we dequeued from a queue. Thus, if we execute two dequeue operations, first we will get {1, 2} respectively. Then element 3 will be the only element of the Output Stack, and the Input Stack will be empty. If we enqueue the elements 4 and 5, then the state of the queue will be as follows;

enter image description here

Now the Output Stack is not empty, and if we execute a dequeue operation, only 3 will be popped out from the Output Stack. Then the state will be seen as below;

enter image description here

Again, if we execute two more dequeue operations, on the first dequeue operation, queue will check if the Output Stack is empty, which is true. Then pop out the elements of the Input Stack and push them to the Output Stack unti the Input Stack is empty, then the state of the Queue will be as below;

enter image description here

Easy to see, the output of the two dequeue operations will be {4, 5}

C - Implementation Of Queue Constructed with Two Stacks

Here is an implementation in Java. I'm not going to use the existing implementation of Stack so the example here is going to reinvent the wheel;

C - 1) MyStack class : A Simple Stack Implementation

public class MyStack<T> {

    // inner generic Node class
    private class Node<T> {
        T data;
        Node<T> next;

        public Node(T data) {
            this.data = data;
        }
    }

    private Node<T> head;
    private int size;

    public void push(T e) {
        Node<T> newElem = new Node(e);

        if(head == null) {
            head = newElem;
        } else {
            newElem.next = head;
            head = newElem;     // new elem on the top of the stack
        }

        size++;
    }

    public T pop() {
        if(head == null)
            return null;

        T elem = head.data;
        head = head.next;   // top of the stack is head.next

        size--;

        return elem;
    }

    public int size() {
        return size;
    }

    public boolean isEmpty() {
        return size == 0;
    }

    public void printStack() {
        System.out.print("Stack: ");

        if(size == 0)
            System.out.print("Empty !");
        else
            for(Node<T> temp = head; temp != null; temp = temp.next)
                System.out.printf("%s ", temp.data);

        System.out.printf("\n");
    }
}

C - 2) MyQueue class : Queue Implementation Using Two Stacks

public class MyQueue<T> {

    private MyStack<T> inputStack;      // for enqueue
    private MyStack<T> outputStack;     // for dequeue
    private int size;

    public MyQueue() {
        inputStack = new MyStack<>();
        outputStack = new MyStack<>();
    }

    public void enqueue(T e) {
        inputStack.push(e);
        size++;
    }

    public T dequeue() {
        // fill out all the Input if output stack is empty
        if(outputStack.isEmpty())
            while(!inputStack.isEmpty())
                outputStack.push(inputStack.pop());

        T temp = null;
        if(!outputStack.isEmpty()) {
            temp = outputStack.pop();
            size--;
        }

        return temp;
    }

    public int size() {
        return size;
    }

    public boolean isEmpty() {
        return size == 0;
    }

}

C - 3) Demo Code

public class TestMyQueue {

    public static void main(String[] args) {
        MyQueue<Integer> queue = new MyQueue<>();

        // enqueue integers 1..3
        for(int i = 1; i <= 3; i++)
            queue.enqueue(i);

        // execute 2 dequeue operations 
        for(int i = 0; i < 2; i++)
            System.out.println("Dequeued: " + queue.dequeue());

        // enqueue integers 4..5
        for(int i = 4; i <= 5; i++)
            queue.enqueue(i);

        // dequeue the rest
        while(!queue.isEmpty())
            System.out.println("Dequeued: " + queue.dequeue());
    }

}

C - 4) Sample Output

Dequeued: 1
Dequeued: 2
Dequeued: 3
Dequeued: 4
Dequeued: 5

Examples related to algorithm

How can I tell if an algorithm is efficient? Find the smallest positive integer that does not occur in a given sequence Efficiently getting all divisors of a given number Peak signal detection in realtime timeseries data What is the optimal algorithm for the game 2048? How can I sort a std::map first by value, then by key? Finding square root without using sqrt function? Fastest way to flatten / un-flatten nested JSON objects Mergesort with Python Find common substring between two strings

Examples related to data-structures

Program to find largest and second largest number in array golang why don't we have a set datastructure How to initialize a vector with fixed length in R C compiling - "undefined reference to"? List of all unique characters in a string? Binary Search Tree - Java Implementation How to clone object in C++ ? Or Is there another solution? How to check queue length in Python Difference between "Complete binary tree", "strict binary tree","full binary Tree"? Write code to convert given number into words (eg 1234 as input should output one thousand two hundred and thirty four)

Examples related to stack

Java balanced expressions check {[()]} What is the default stack size, can it grow, how does it work with garbage collection? Parenthesis/Brackets Matching using Stack algorithm Stack array using pop() and push() What does "ulimit -s unlimited" do? Java ArrayList how to add elements at the beginning How to clone object in C++ ? Or Is there another solution? what is the basic difference between stack and queue? Object creation on the stack/heap? What are SP (stack) and LR in ARM?

Examples related to queue

Difference between "enqueue" and "dequeue" C++11 thread-safe queue Calculating Waiting Time and Turnaround Time in (non-preemptive) FCFS queue How to clone object in C++ ? Or Is there another solution? How to check queue length in Python what is the basic difference between stack and queue? FIFO based Queue implementations? Deleting queues in RabbitMQ "Cannot instantiate the type..." Size-limited queue that holds last N elements in Java