[c#] How do I copy the contents of one stream to another?

What is the best way to copy the contents of one stream to another? Is there a standard utility method for this?

This question is related to c# stream copying

The answer is


I use the following extension methods. They have optimized overloads for when one stream is a MemoryStream.

    public static void CopyTo(this Stream src, Stream dest)
    {
        int size = (src.CanSeek) ? Math.Min((int)(src.Length - src.Position), 0x2000) : 0x2000;
        byte[] buffer = new byte[size];
        int n;
        do
        {
            n = src.Read(buffer, 0, buffer.Length);
            dest.Write(buffer, 0, n);
        } while (n != 0);           
    }

    public static void CopyTo(this MemoryStream src, Stream dest)
    {
        dest.Write(src.GetBuffer(), (int)src.Position, (int)(src.Length - src.Position));
    }

    public static void CopyTo(this Stream src, MemoryStream dest)
    {
        if (src.CanSeek)
        {
            int pos = (int)dest.Position;
            int length = (int)(src.Length - src.Position) + pos;
            dest.SetLength(length); 

            while(pos < length)                
                pos += src.Read(dest.GetBuffer(), pos, length - pos);
        }
        else
            src.CopyTo((Stream)dest);
    }

The basic questions that differentiate implementations of "CopyStream" are:

  • size of the reading buffer
  • size of the writes
  • Can we use more than one thread (writing while we are reading).

The answers to these questions result in vastly different implementations of CopyStream and are dependent on what kind of streams you have and what you are trying to optimize. The "best" implementation would even need to know what specific hardware the streams were reading and writing to.


There is actually, a less heavy-handed way of doing a stream copy. Take note however, that this implies that you can store the entire file in memory. Don't try and use this if you are working with files that go into the hundreds of megabytes or more, without caution.

public static void CopySmallTextStream(Stream input, Stream output)
{
  using (StreamReader reader = new StreamReader(input))
  using (StreamWriter writer = new StreamWriter(output))
  {
    writer.Write(reader.ReadToEnd());
  }
}

NOTE: There may also be some issues concerning binary data and character encodings.


if you want a procdure to copy a stream to other the one that nick posted is fine but it is missing the position reset, it should be

public static void CopyStream(Stream input, Stream output)
{
    byte[] buffer = new byte[32768];
    long TempPos = input.Position;
    while (true)    
    {
        int read = input.Read (buffer, 0, buffer.Length);
        if (read <= 0)
            return;
        output.Write (buffer, 0, read);
    }
    input.Position = TempPos;// or you make Position = 0 to set it at the start
}

but if it is in runtime not using a procedure you shpuld use memory stream

Stream output = new MemoryStream();
byte[] buffer = new byte[32768]; // or you specify the size you want of your buffer
long TempPos = input.Position;
while (true)    
{
    int read = input.Read (buffer, 0, buffer.Length);
    if (read <= 0)
        return;
    output.Write (buffer, 0, read);
 }
    input.Position = TempPos;// or you make Position = 0 to set it at the start

Unfortunately, there is no really simple solution. You can try something like that:

Stream s1, s2;
byte[] buffer = new byte[4096];
int bytesRead = 0;
while (bytesRead = s1.Read(buffer, 0, buffer.Length) > 0) s2.Write(buffer, 0, bytesRead);
s1.Close(); s2.Close();

But the problem with that that different implementation of the Stream class might behave differently if there is nothing to read. A stream reading a file from a local harddrive will probably block until the read operaition has read enough data from the disk to fill the buffer and only return less data if it reaches the end of file. On the other hand, a stream reading from the network might return less data even though there are more data left to be received.

Always check the documentation of the specific stream class you are using before using a generic solution.


The basic questions that differentiate implementations of "CopyStream" are:

  • size of the reading buffer
  • size of the writes
  • Can we use more than one thread (writing while we are reading).

The answers to these questions result in vastly different implementations of CopyStream and are dependent on what kind of streams you have and what you are trying to optimize. The "best" implementation would even need to know what specific hardware the streams were reading and writing to.


Unfortunately, there is no really simple solution. You can try something like that:

Stream s1, s2;
byte[] buffer = new byte[4096];
int bytesRead = 0;
while (bytesRead = s1.Read(buffer, 0, buffer.Length) > 0) s2.Write(buffer, 0, bytesRead);
s1.Close(); s2.Close();

But the problem with that that different implementation of the Stream class might behave differently if there is nothing to read. A stream reading a file from a local harddrive will probably block until the read operaition has read enough data from the disk to fill the buffer and only return less data if it reaches the end of file. On the other hand, a stream reading from the network might return less data even though there are more data left to be received.

Always check the documentation of the specific stream class you are using before using a generic solution.


There may be a way to do this more efficiently, depending on what kind of stream you're working with. If you can convert one or both of your streams to a MemoryStream, you can use the GetBuffer method to work directly with a byte array representing your data. This lets you use methods like Array.CopyTo, which abstract away all the issues raised by fryguybob. You can just trust .NET to know the optimal way to copy the data.


MemoryStream has .WriteTo(outstream);

and .NET 4.0 has .CopyTo on normal stream object.

.NET 4.0:

instream.CopyTo(outstream);

There may be a way to do this more efficiently, depending on what kind of stream you're working with. If you can convert one or both of your streams to a MemoryStream, you can use the GetBuffer method to work directly with a byte array representing your data. This lets you use methods like Array.CopyTo, which abstract away all the issues raised by fryguybob. You can just trust .NET to know the optimal way to copy the data.


The following code to solve the issue copy the Stream to MemoryStream using CopyTo

Stream stream = new MemoryStream();

//any function require input the stream. In mycase to save the PDF file as stream document.Save(stream);

MemoryStream newMs = (MemoryStream)stream;

byte[] getByte = newMs.ToArray();

//Note - please dispose the stream in the finally block instead of inside using block as it will throw an error 'Access denied as the stream is closed'


Since none of the answers have covered an asynchronous way of copying from one stream to another, here is a pattern that I've successfully used in a port forwarding application to copy data from one network stream to another. It lacks exception handling to emphasize the pattern.

const int BUFFER_SIZE = 4096;

static byte[] bufferForRead = new byte[BUFFER_SIZE];
static byte[] bufferForWrite = new byte[BUFFER_SIZE];

static Stream sourceStream = new MemoryStream();
static Stream destinationStream = new MemoryStream();

static void Main(string[] args)
{
    // Initial read from source stream
    sourceStream.BeginRead(bufferForRead, 0, BUFFER_SIZE, BeginReadCallback, null);
}

private static void BeginReadCallback(IAsyncResult asyncRes)
{
    // Finish reading from source stream
    int bytesRead = sourceStream.EndRead(asyncRes);
    // Make a copy of the buffer as we'll start another read immediately
    Array.Copy(bufferForRead, 0, bufferForWrite, 0, bytesRead);
    // Write copied buffer to destination stream
    destinationStream.BeginWrite(bufferForWrite, 0, bytesRead, BeginWriteCallback, null);
    // Start the next read (looks like async recursion I guess)
    sourceStream.BeginRead(bufferForRead, 0, BUFFER_SIZE, BeginReadCallback, null);
}

private static void BeginWriteCallback(IAsyncResult asyncRes)
{
    // Finish writing to destination stream
    destinationStream.EndWrite(asyncRes);
}

There may be a way to do this more efficiently, depending on what kind of stream you're working with. If you can convert one or both of your streams to a MemoryStream, you can use the GetBuffer method to work directly with a byte array representing your data. This lets you use methods like Array.CopyTo, which abstract away all the issues raised by fryguybob. You can just trust .NET to know the optimal way to copy the data.


The following code to solve the issue copy the Stream to MemoryStream using CopyTo

Stream stream = new MemoryStream();

//any function require input the stream. In mycase to save the PDF file as stream document.Save(stream);

MemoryStream newMs = (MemoryStream)stream;

byte[] getByte = newMs.ToArray();

//Note - please dispose the stream in the finally block instead of inside using block as it will throw an error 'Access denied as the stream is closed'


There is actually, a less heavy-handed way of doing a stream copy. Take note however, that this implies that you can store the entire file in memory. Don't try and use this if you are working with files that go into the hundreds of megabytes or more, without caution.

public static void CopySmallTextStream(Stream input, Stream output)
{
  using (StreamReader reader = new StreamReader(input))
  using (StreamWriter writer = new StreamWriter(output))
  {
    writer.Write(reader.ReadToEnd());
  }
}

NOTE: There may also be some issues concerning binary data and character encodings.


For .NET 3.5 and before try :

MemoryStream1.WriteTo(MemoryStream2);

Easy and safe - make new stream from original source:

    MemoryStream source = new MemoryStream(byteArray);
    MemoryStream copy = new MemoryStream(byteArray);

For .NET 3.5 and before try :

MemoryStream1.WriteTo(MemoryStream2);

The basic questions that differentiate implementations of "CopyStream" are:

  • size of the reading buffer
  • size of the writes
  • Can we use more than one thread (writing while we are reading).

The answers to these questions result in vastly different implementations of CopyStream and are dependent on what kind of streams you have and what you are trying to optimize. The "best" implementation would even need to know what specific hardware the streams were reading and writing to.


Unfortunately, there is no really simple solution. You can try something like that:

Stream s1, s2;
byte[] buffer = new byte[4096];
int bytesRead = 0;
while (bytesRead = s1.Read(buffer, 0, buffer.Length) > 0) s2.Write(buffer, 0, bytesRead);
s1.Close(); s2.Close();

But the problem with that that different implementation of the Stream class might behave differently if there is nothing to read. A stream reading a file from a local harddrive will probably block until the read operaition has read enough data from the disk to fill the buffer and only return less data if it reaches the end of file. On the other hand, a stream reading from the network might return less data even though there are more data left to be received.

Always check the documentation of the specific stream class you are using before using a generic solution.


Easy and safe - make new stream from original source:

    MemoryStream source = new MemoryStream(byteArray);
    MemoryStream copy = new MemoryStream(byteArray);

MemoryStream has .WriteTo(outstream);

and .NET 4.0 has .CopyTo on normal stream object.

.NET 4.0:

instream.CopyTo(outstream);

Since none of the answers have covered an asynchronous way of copying from one stream to another, here is a pattern that I've successfully used in a port forwarding application to copy data from one network stream to another. It lacks exception handling to emphasize the pattern.

const int BUFFER_SIZE = 4096;

static byte[] bufferForRead = new byte[BUFFER_SIZE];
static byte[] bufferForWrite = new byte[BUFFER_SIZE];

static Stream sourceStream = new MemoryStream();
static Stream destinationStream = new MemoryStream();

static void Main(string[] args)
{
    // Initial read from source stream
    sourceStream.BeginRead(bufferForRead, 0, BUFFER_SIZE, BeginReadCallback, null);
}

private static void BeginReadCallback(IAsyncResult asyncRes)
{
    // Finish reading from source stream
    int bytesRead = sourceStream.EndRead(asyncRes);
    // Make a copy of the buffer as we'll start another read immediately
    Array.Copy(bufferForRead, 0, bufferForWrite, 0, bytesRead);
    // Write copied buffer to destination stream
    destinationStream.BeginWrite(bufferForWrite, 0, bytesRead, BeginWriteCallback, null);
    // Start the next read (looks like async recursion I guess)
    sourceStream.BeginRead(bufferForRead, 0, BUFFER_SIZE, BeginReadCallback, null);
}

private static void BeginWriteCallback(IAsyncResult asyncRes)
{
    // Finish writing to destination stream
    destinationStream.EndWrite(asyncRes);
}

There may be a way to do this more efficiently, depending on what kind of stream you're working with. If you can convert one or both of your streams to a MemoryStream, you can use the GetBuffer method to work directly with a byte array representing your data. This lets you use methods like Array.CopyTo, which abstract away all the issues raised by fryguybob. You can just trust .NET to know the optimal way to copy the data.


.NET Framework 4 introduce new "CopyTo" method of Stream Class of System.IO namespace. Using this method we can copy one stream to another stream of different stream class.

Here is example for this.

    FileStream objFileStream = File.Open(Server.MapPath("TextFile.txt"), FileMode.Open);
    Response.Write(string.Format("FileStream Content length: {0}", objFileStream.Length.ToString()));

    MemoryStream objMemoryStream = new MemoryStream();

    // Copy File Stream to Memory Stream using CopyTo method
    objFileStream.CopyTo(objMemoryStream);
    Response.Write("<br/><br/>");
    Response.Write(string.Format("MemoryStream Content length: {0}", objMemoryStream.Length.ToString()));
    Response.Write("<br/><br/>");

The basic questions that differentiate implementations of "CopyStream" are:

  • size of the reading buffer
  • size of the writes
  • Can we use more than one thread (writing while we are reading).

The answers to these questions result in vastly different implementations of CopyStream and are dependent on what kind of streams you have and what you are trying to optimize. The "best" implementation would even need to know what specific hardware the streams were reading and writing to.


if you want a procdure to copy a stream to other the one that nick posted is fine but it is missing the position reset, it should be

public static void CopyStream(Stream input, Stream output)
{
    byte[] buffer = new byte[32768];
    long TempPos = input.Position;
    while (true)    
    {
        int read = input.Read (buffer, 0, buffer.Length);
        if (read <= 0)
            return;
        output.Write (buffer, 0, read);
    }
    input.Position = TempPos;// or you make Position = 0 to set it at the start
}

but if it is in runtime not using a procedure you shpuld use memory stream

Stream output = new MemoryStream();
byte[] buffer = new byte[32768]; // or you specify the size you want of your buffer
long TempPos = input.Position;
while (true)    
{
    int read = input.Read (buffer, 0, buffer.Length);
    if (read <= 0)
        return;
    output.Write (buffer, 0, read);
 }
    input.Position = TempPos;// or you make Position = 0 to set it at the start

Unfortunately, there is no really simple solution. You can try something like that:

Stream s1, s2;
byte[] buffer = new byte[4096];
int bytesRead = 0;
while (bytesRead = s1.Read(buffer, 0, buffer.Length) > 0) s2.Write(buffer, 0, bytesRead);
s1.Close(); s2.Close();

But the problem with that that different implementation of the Stream class might behave differently if there is nothing to read. A stream reading a file from a local harddrive will probably block until the read operaition has read enough data from the disk to fill the buffer and only return less data if it reaches the end of file. On the other hand, a stream reading from the network might return less data even though there are more data left to be received.

Always check the documentation of the specific stream class you are using before using a generic solution.