[c++] What is the bit size of long on 64-bit Windows?

Not to long ago, someone told me that long are not 64 bits on 64 bit machines and I should always use int. This did not make sense to me. I have seen docs (such as the one on Apple's official site) say that long are indeed 64 bits when compiling for a 64-bit CPU. I looked up what it was on 64-bit Windows and found

  • Windows: long and int remain 32-bit in length, and special new data types are defined for 64-bit integers.

(from http://www.intel.com/cd/ids/developer/asmo-na/eng/197664.htm?page=2)

What should I use? Should I define something like uw, sw ((un)signed width) as a long if not on Windows, and otherwise do a check on the target CPU bitsize?

This question is related to c++ c windows 64-bit porting

The answer is


In the Unix world, there were a few possible arrangements for the sizes of integers and pointers for 64-bit platforms. The two mostly widely used were ILP64 (actually, only a very few examples of this; Cray was one such) and LP64 (for almost everything else). The acronynms come from 'int, long, pointers are 64-bit' and 'long, pointers are 64-bit'.

Type           ILP64   LP64   LLP64
char              8      8       8
short            16     16      16
int              64     32      32
long             64     64      32
long long        64     64      64
pointer          64     64      64

The ILP64 system was abandoned in favour of LP64 (that is, almost all later entrants used LP64, based on the recommendations of the Aspen group; only systems with a long heritage of 64-bit operation use a different scheme). All modern 64-bit Unix systems use LP64. MacOS X and Linux are both modern 64-bit systems.

Microsoft uses a different scheme for transitioning to 64-bit: LLP64 ('long long, pointers are 64-bit'). This has the merit of meaning that 32-bit software can be recompiled without change. It has the demerit of being different from what everyone else does, and also requires code to be revised to exploit 64-bit capacities. There always was revision necessary; it was just a different set of revisions from the ones needed on Unix platforms.

If you design your software around platform-neutral integer type names, probably using the C99 <inttypes.h> header, which, when the types are available on the platform, provides, in signed (listed) and unsigned (not listed; prefix with 'u'):

  • int8_t - 8-bit integers
  • int16_t - 16-bit integers
  • int32_t - 32-bit integers
  • int64_t - 64-bit integers
  • uintptr_t - unsigned integers big enough to hold pointers
  • intmax_t - biggest size of integer on the platform (might be larger than int64_t)

You can then code your application using these types where it matters, and being very careful with system types (which might be different). There is an intptr_t type - a signed integer type for holding pointers; you should plan on not using it, or only using it as the result of a subtraction of two uintptr_t values (ptrdiff_t).

But, as the question points out (in disbelief), there are different systems for the sizes of the integer data types on 64-bit machines. Get used to it; the world isn't going to change.


This article on MSDN references a number of type aliases (available on Windows) that are a bit more explicit with respect to their width:

http://msdn.microsoft.com/en-us/library/aa505945.aspx

For instance, although you can use ULONGLONG to reference a 64-bit unsigned integral value, you can also use UINT64. (The same goes for ULONG and UINT32.) Perhaps these will be a bit clearer?


The easiest way to get to know it for your compiler/platform:

#include <iostream>

int main() {
  std::cout << sizeof(long)*8 << std::endl;
}

Themultiplication by 8 is to get bits from bytes.

When you need a particular size, it is often easiest to use one of the predefined types of a library. If that is undesirable, you can do what often happens with autoconf software and have the configuration system determine the right type for the needed size.


If you need to use integers of certain length, you probably should use some platform independent headers to help you. Boost is a good place to look at.


The easiest way to get to know it for your compiler/platform:

#include <iostream>

int main() {
  std::cout << sizeof(long)*8 << std::endl;
}

Themultiplication by 8 is to get bits from bytes.

When you need a particular size, it is often easiest to use one of the predefined types of a library. If that is undesirable, you can do what often happens with autoconf software and have the configuration system determine the right type for the needed size.


In the Unix world, there were a few possible arrangements for the sizes of integers and pointers for 64-bit platforms. The two mostly widely used were ILP64 (actually, only a very few examples of this; Cray was one such) and LP64 (for almost everything else). The acronynms come from 'int, long, pointers are 64-bit' and 'long, pointers are 64-bit'.

Type           ILP64   LP64   LLP64
char              8      8       8
short            16     16      16
int              64     32      32
long             64     64      32
long long        64     64      64
pointer          64     64      64

The ILP64 system was abandoned in favour of LP64 (that is, almost all later entrants used LP64, based on the recommendations of the Aspen group; only systems with a long heritage of 64-bit operation use a different scheme). All modern 64-bit Unix systems use LP64. MacOS X and Linux are both modern 64-bit systems.

Microsoft uses a different scheme for transitioning to 64-bit: LLP64 ('long long, pointers are 64-bit'). This has the merit of meaning that 32-bit software can be recompiled without change. It has the demerit of being different from what everyone else does, and also requires code to be revised to exploit 64-bit capacities. There always was revision necessary; it was just a different set of revisions from the ones needed on Unix platforms.

If you design your software around platform-neutral integer type names, probably using the C99 <inttypes.h> header, which, when the types are available on the platform, provides, in signed (listed) and unsigned (not listed; prefix with 'u'):

  • int8_t - 8-bit integers
  • int16_t - 16-bit integers
  • int32_t - 32-bit integers
  • int64_t - 64-bit integers
  • uintptr_t - unsigned integers big enough to hold pointers
  • intmax_t - biggest size of integer on the platform (might be larger than int64_t)

You can then code your application using these types where it matters, and being very careful with system types (which might be different). There is an intptr_t type - a signed integer type for holding pointers; you should plan on not using it, or only using it as the result of a subtraction of two uintptr_t values (ptrdiff_t).

But, as the question points out (in disbelief), there are different systems for the sizes of the integer data types on 64-bit machines. Get used to it; the world isn't going to change.


If you need to use integers of certain length, you probably should use some platform independent headers to help you. Boost is a good place to look at.


In the Unix world, there were a few possible arrangements for the sizes of integers and pointers for 64-bit platforms. The two mostly widely used were ILP64 (actually, only a very few examples of this; Cray was one such) and LP64 (for almost everything else). The acronynms come from 'int, long, pointers are 64-bit' and 'long, pointers are 64-bit'.

Type           ILP64   LP64   LLP64
char              8      8       8
short            16     16      16
int              64     32      32
long             64     64      32
long long        64     64      64
pointer          64     64      64

The ILP64 system was abandoned in favour of LP64 (that is, almost all later entrants used LP64, based on the recommendations of the Aspen group; only systems with a long heritage of 64-bit operation use a different scheme). All modern 64-bit Unix systems use LP64. MacOS X and Linux are both modern 64-bit systems.

Microsoft uses a different scheme for transitioning to 64-bit: LLP64 ('long long, pointers are 64-bit'). This has the merit of meaning that 32-bit software can be recompiled without change. It has the demerit of being different from what everyone else does, and also requires code to be revised to exploit 64-bit capacities. There always was revision necessary; it was just a different set of revisions from the ones needed on Unix platforms.

If you design your software around platform-neutral integer type names, probably using the C99 <inttypes.h> header, which, when the types are available on the platform, provides, in signed (listed) and unsigned (not listed; prefix with 'u'):

  • int8_t - 8-bit integers
  • int16_t - 16-bit integers
  • int32_t - 32-bit integers
  • int64_t - 64-bit integers
  • uintptr_t - unsigned integers big enough to hold pointers
  • intmax_t - biggest size of integer on the platform (might be larger than int64_t)

You can then code your application using these types where it matters, and being very careful with system types (which might be different). There is an intptr_t type - a signed integer type for holding pointers; you should plan on not using it, or only using it as the result of a subtraction of two uintptr_t values (ptrdiff_t).

But, as the question points out (in disbelief), there are different systems for the sizes of the integer data types on 64-bit machines. Get used to it; the world isn't going to change.


This article on MSDN references a number of type aliases (available on Windows) that are a bit more explicit with respect to their width:

http://msdn.microsoft.com/en-us/library/aa505945.aspx

For instance, although you can use ULONGLONG to reference a 64-bit unsigned integral value, you can also use UINT64. (The same goes for ULONG and UINT32.) Perhaps these will be a bit clearer?


It is not clear if the question is about the Microsoft C++ compiler or the Windows API. However, there is no [c++] tag so I assume it is about the Windows API. Some of the answers have suffered from link rot so I am providing yet another link that can rot.


For information about Windows API types like INT, LONG etc. there is a page on MSDN:

Windows Data Types

The information is also available in various Windows header files like WinDef.h. I have listed a few relevant types here:

Type                        | S/U | x86    | x64
----------------------------+-----+--------+-------
BYTE, BOOLEAN               | U   | 8 bit  | 8 bit
----------------------------+-----+--------+-------
SHORT                       | S   | 16 bit | 16 bit
USHORT, WORD                | U   | 16 bit | 16 bit
----------------------------+-----+--------+-------
INT, LONG                   | S   | 32 bit | 32 bit
UINT, ULONG, DWORD          | U   | 32 bit | 32 bit
----------------------------+-----+--------+-------
INT_PTR, LONG_PTR, LPARAM   | S   | 32 bit | 64 bit
UINT_PTR, ULONG_PTR, WPARAM | U   | 32 bit | 64 bit
----------------------------+-----+--------+-------
LONGLONG                    | S   | 64 bit | 64 bit
ULONGLONG, QWORD            | U   | 64 bit | 64 bit

The column "S/U" denotes signed/unsigned.


This article on MSDN references a number of type aliases (available on Windows) that are a bit more explicit with respect to their width:

http://msdn.microsoft.com/en-us/library/aa505945.aspx

For instance, although you can use ULONGLONG to reference a 64-bit unsigned integral value, you can also use UINT64. (The same goes for ULONG and UINT32.) Perhaps these will be a bit clearer?


In the Unix world, there were a few possible arrangements for the sizes of integers and pointers for 64-bit platforms. The two mostly widely used were ILP64 (actually, only a very few examples of this; Cray was one such) and LP64 (for almost everything else). The acronynms come from 'int, long, pointers are 64-bit' and 'long, pointers are 64-bit'.

Type           ILP64   LP64   LLP64
char              8      8       8
short            16     16      16
int              64     32      32
long             64     64      32
long long        64     64      64
pointer          64     64      64

The ILP64 system was abandoned in favour of LP64 (that is, almost all later entrants used LP64, based on the recommendations of the Aspen group; only systems with a long heritage of 64-bit operation use a different scheme). All modern 64-bit Unix systems use LP64. MacOS X and Linux are both modern 64-bit systems.

Microsoft uses a different scheme for transitioning to 64-bit: LLP64 ('long long, pointers are 64-bit'). This has the merit of meaning that 32-bit software can be recompiled without change. It has the demerit of being different from what everyone else does, and also requires code to be revised to exploit 64-bit capacities. There always was revision necessary; it was just a different set of revisions from the ones needed on Unix platforms.

If you design your software around platform-neutral integer type names, probably using the C99 <inttypes.h> header, which, when the types are available on the platform, provides, in signed (listed) and unsigned (not listed; prefix with 'u'):

  • int8_t - 8-bit integers
  • int16_t - 16-bit integers
  • int32_t - 32-bit integers
  • int64_t - 64-bit integers
  • uintptr_t - unsigned integers big enough to hold pointers
  • intmax_t - biggest size of integer on the platform (might be larger than int64_t)

You can then code your application using these types where it matters, and being very careful with system types (which might be different). There is an intptr_t type - a signed integer type for holding pointers; you should plan on not using it, or only using it as the result of a subtraction of two uintptr_t values (ptrdiff_t).

But, as the question points out (in disbelief), there are different systems for the sizes of the integer data types on 64-bit machines. Get used to it; the world isn't going to change.


Microsoft has also defined UINT_PTR and INT_PTR for integers that are the same size as a pointer.

Here is a list of Microsoft specific types - it's part of their driver reference, but I believe it's valid for general programming as well.


If you need to use integers of certain length, you probably should use some platform independent headers to help you. Boost is a good place to look at.


Microsoft has also defined UINT_PTR and INT_PTR for integers that are the same size as a pointer.

Here is a list of Microsoft specific types - it's part of their driver reference, but I believe it's valid for general programming as well.


This article on MSDN references a number of type aliases (available on Windows) that are a bit more explicit with respect to their width:

http://msdn.microsoft.com/en-us/library/aa505945.aspx

For instance, although you can use ULONGLONG to reference a 64-bit unsigned integral value, you can also use UINT64. (The same goes for ULONG and UINT32.) Perhaps these will be a bit clearer?


It is not clear if the question is about the Microsoft C++ compiler or the Windows API. However, there is no [c++] tag so I assume it is about the Windows API. Some of the answers have suffered from link rot so I am providing yet another link that can rot.


For information about Windows API types like INT, LONG etc. there is a page on MSDN:

Windows Data Types

The information is also available in various Windows header files like WinDef.h. I have listed a few relevant types here:

Type                        | S/U | x86    | x64
----------------------------+-----+--------+-------
BYTE, BOOLEAN               | U   | 8 bit  | 8 bit
----------------------------+-----+--------+-------
SHORT                       | S   | 16 bit | 16 bit
USHORT, WORD                | U   | 16 bit | 16 bit
----------------------------+-----+--------+-------
INT, LONG                   | S   | 32 bit | 32 bit
UINT, ULONG, DWORD          | U   | 32 bit | 32 bit
----------------------------+-----+--------+-------
INT_PTR, LONG_PTR, LPARAM   | S   | 32 bit | 64 bit
UINT_PTR, ULONG_PTR, WPARAM | U   | 32 bit | 64 bit
----------------------------+-----+--------+-------
LONGLONG                    | S   | 64 bit | 64 bit
ULONGLONG, QWORD            | U   | 64 bit | 64 bit

The column "S/U" denotes signed/unsigned.


The easiest way to get to know it for your compiler/platform:

#include <iostream>

int main() {
  std::cout << sizeof(long)*8 << std::endl;
}

Themultiplication by 8 is to get bits from bytes.

When you need a particular size, it is often easiest to use one of the predefined types of a library. If that is undesirable, you can do what often happens with autoconf software and have the configuration system determine the right type for the needed size.


The size in bits of long on Windows platforms is 32 bits (4 bytes).

You can check this using sizeof(long).


Microsoft has also defined UINT_PTR and INT_PTR for integers that are the same size as a pointer.

Here is a list of Microsoft specific types - it's part of their driver reference, but I believe it's valid for general programming as well.


Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to c

conflicting types for 'outchar' Can't compile C program on a Mac after upgrade to Mojave Program to find largest and second largest number in array Prime numbers between 1 to 100 in C Programming Language In c, in bool, true == 1 and false == 0? How I can print to stderr in C? Visual Studio Code includePath "error: assignment to expression with array type error" when I assign a struct field (C) Compiling an application for use in highly radioactive environments How can you print multiple variables inside a string using printf?

Examples related to windows

"Permission Denied" trying to run Python on Windows 10 A fatal error occurred while creating a TLS client credential. The internal error state is 10013 How to install OpenJDK 11 on Windows? I can't install pyaudio on Windows? How to solve "error: Microsoft Visual C++ 14.0 is required."? git clone: Authentication failed for <URL> How to avoid the "Windows Defender SmartScreen prevented an unrecognized app from starting warning" XCOPY: Overwrite all without prompt in BATCH Laravel 5 show ErrorException file_put_contents failed to open stream: No such file or directory how to open Jupyter notebook in chrome on windows Tensorflow import error: No module named 'tensorflow'

Examples related to 64-bit

Android Studio: /dev/kvm device permission denied How to printf a 64-bit integer as hex? Unable to install Android Studio in Ubuntu I cannot start SQL Server browser Class not registered Error Excel VBA Code: Compile Error in x64 Version ('PtrSafe' attribute required) MSOnline can't be imported on PowerShell (Connect-MsolService error) How to know installed Oracle Client is 32 bit or 64 bit? The application was unable to start correctly (0xc000007b) How to specify 64 bit integers in c

Examples related to porting

How to make CREATE OR REPLACE VIEW work in SQL Server? Strict Standards: Only variables should be assigned by reference PHP 5.4 What causes signal 'SIGILL'? What is the bit size of long on 64-bit Windows?