[java] How to determine if binary tree is balanced?

Balance is a truly subtle property; you think you know what it is, but it's so easy to get wrong. In particular, even Eric Lippert's (good) answer is off. That's because the notion of height is not enough. You need to have the concept of minimum and maximum heights of a tree (where the minimum height is the least number of steps from the root to a leaf, and the maximum is... well, you get the picture). Given that, we can define balance to be:

A tree where the maximum height of any branch is no more than one more than the minimum height of any branch.

(This actually implies that the branches are themselves balanced; you can pick the same branch for both maximum and minimum.)

All you need to do to verify this property is a simple tree traversal keeping track of the current depth. The first time you backtrack, that gives you a baseline depth. Each time after that when you backtrack, you compare the new depth against the baseline

  • if it's equal to the baseline, then you just continue
  • if it is more than one different, the tree isn't balanced
  • if it is one off, then you now know the range for balance, and all subsequent depths (when you're about to backtrack) must be either the first or the second value.

In code:

class Tree {
    Tree left, right;
    static interface Observer {
        public void before();
        public void after();
        public boolean end();
    }
    static boolean traverse(Tree t, Observer o) {
        if (t == null) {
            return o.end();
        } else {
            o.before();
            try {
                if (traverse(left, o))
                    return traverse(right, o);
                return false;
            } finally {
                o.after();
            }
        }
    }
    boolean balanced() {
        final Integer[] heights = new Integer[2];
        return traverse(this, new Observer() {
            int h;
            public void before() { h++; }
            public void after() { h--; }
            public boolean end() {
                if (heights[0] == null) {
                    heights[0] = h;
                } else if (Math.abs(heights[0] - h) > 1) {
                    return false;
                } else if (heights[0] != h) {
                    if (heights[1] == null) {
                        heights[1] = h;
                    } else if (heights[1] != h) {
                        return false;
                    }
                }
                return true;
            }
        });
    }
}

I suppose you could do this without using the Observer pattern, but I find it easier to reason this way.


[EDIT]: Why you can't just take the height of each side. Consider this tree:

        /\
       /  \
      /    \
     /      \_____
    /\      /     \_
   /  \    /      / \
  /\   C  /\     /   \
 /  \    /  \   /\   /\
A    B  D    E F  G H  J

OK, a bit messy, but each side of the root is balanced: C is depth 2, A, B, D, E are depth 3, and F, G, H, J are depth 4. The height of the left branch is 2 (remember the height decreases as you traverse the branch), the height of the right branch is 3. Yet the overall tree is not balanced as there is a difference in height of 2 between C and F. You need a minimax specification (though the actual algorithm can be less complex as there should be only two permitted heights).

Examples related to java

Under what circumstances can I call findViewById with an Options Menu / Action Bar item? How much should a function trust another function How to implement a simple scenario the OO way Two constructors How do I get some variable from another class in Java? this in equals method How to split a string in two and store it in a field How to do perspective fixing? String index out of range: 4 My eclipse won't open, i download the bundle pack it keeps saying error log

Examples related to algorithm

How can I tell if an algorithm is efficient? Find the smallest positive integer that does not occur in a given sequence Efficiently getting all divisors of a given number Peak signal detection in realtime timeseries data What is the optimal algorithm for the game 2048? How can I sort a std::map first by value, then by key? Finding square root without using sqrt function? Fastest way to flatten / un-flatten nested JSON objects Mergesort with Python Find common substring between two strings

Examples related to data-structures

Program to find largest and second largest number in array golang why don't we have a set datastructure How to initialize a vector with fixed length in R C compiling - "undefined reference to"? List of all unique characters in a string? Binary Search Tree - Java Implementation How to clone object in C++ ? Or Is there another solution? How to check queue length in Python Difference between "Complete binary tree", "strict binary tree","full binary Tree"? Write code to convert given number into words (eg 1234 as input should output one thousand two hundred and thirty four)

Examples related to binary-tree

Difference between "Complete binary tree", "strict binary tree","full binary Tree"? Difference between binary tree and binary search tree Heap vs Binary Search Tree (BST) C linked list inserting node at the end How to print binary tree diagram? With ' N ' no of nodes, how many different Binary and Binary Search Trees possible? How to implement a binary tree? Find kth smallest element in a binary search tree in Optimum way What are the applications of binary trees? How to find the lowest common ancestor of two nodes in any binary tree?