I have found the following algorithm very clear and simple:
def get_powerset(some_list):
"""Returns all subsets of size 0 - len(some_list) for some_list"""
if len(some_list) == 0:
return [[]]
subsets = []
first_element = some_list[0]
remaining_list = some_list[1:]
# Strategy: get all the subsets of remaining_list. For each
# of those subsets, a full subset list will contain both
# the original subset as well as a version of the subset
# that contains first_element
for partial_subset in get_powerset(remaining_list):
subsets.append(partial_subset)
subsets.append(partial_subset[:] + [first_element])
return subsets
Another way one can generate the powerset is by generating all binary numbers that have n
bits. As a power set the amount of number with n
digits is 2 ^ n
. The principle of this algorithm is that an element could be present or not in a subset as a binary digit could be one or zero but not both.
def power_set(items):
N = len(items)
# enumerate the 2 ** N possible combinations
for i in range(2 ** N):
combo = []
for j in range(N):
# test bit jth of integer i
if (i >> j) % 2 == 1:
combo.append(items[j])
yield combo
I found both algorithms when I was taking MITx: 6.00.2x Introduction to Computational Thinking and Data Science, and I consider it is one of the easiest algorithms to understand I have seen.