I'm writing this to make sure I understand it properly.
Move semantics were created to avoid the unnecessary copying of large objects. Bjarne Stroustrup in his book "The C++ Programming Language" uses two examples where unnecessary copying occurs by default: one, the swapping of two large objects, and two, the returning of a large object from a method.
Swapping two large objects usually involves copying the first object to a temporary object, copying the second object to the first object, and copying the temporary object to the second object. For a built-in type, this is very fast, but for large objects these three copies could take a large amount of time. A "move assignment" allows the programmer to override the default copy behavior and instead swap references to the objects, which means that there is no copying at all and the swap operation is much faster. The move assignment can be invoked by calling the std::move() method.
Returning an object from a method by default involves making a copy of the local object and its associated data in a location which is accessible to the caller (because the local object is not accessible to the caller and disappears when the method finishes). When a built-in type is being returned, this operation is very fast, but if a large object is being returned, this could take a long time. The move constructor allows the programmer to override this default behavior and instead "reuse" the heap data associated with the local object by pointing the object being returned to the caller to heap data associated with the local object. Thus no copying is required.
In languages which do not allow the creation of local objects (that is, objects on the stack) these types of problems do not occur as all objects are allocated on the heap and are always accessed by reference.