[python] What are the differences between numpy arrays and matrices? Which one should I use?

Numpy matrices are strictly 2-dimensional, while numpy arrays (ndarrays) are N-dimensional. Matrix objects are a subclass of ndarray, so they inherit all the attributes and methods of ndarrays.

The main advantage of numpy matrices is that they provide a convenient notation for matrix multiplication: if a and b are matrices, then a*b is their matrix product.

import numpy as np

a = np.mat('4 3; 2 1')
b = np.mat('1 2; 3 4')
print(a)
# [[4 3]
#  [2 1]]
print(b)
# [[1 2]
#  [3 4]]
print(a*b)
# [[13 20]
#  [ 5  8]]

On the other hand, as of Python 3.5, NumPy supports infix matrix multiplication using the @ operator, so you can achieve the same convenience of matrix multiplication with ndarrays in Python >= 3.5.

import numpy as np

a = np.array([[4, 3], [2, 1]])
b = np.array([[1, 2], [3, 4]])
print(a@b)
# [[13 20]
#  [ 5  8]]

Both matrix objects and ndarrays have .T to return the transpose, but matrix objects also have .H for the conjugate transpose, and .I for the inverse.

In contrast, numpy arrays consistently abide by the rule that operations are applied element-wise (except for the new @ operator). Thus, if a and b are numpy arrays, then a*b is the array formed by multiplying the components element-wise:

c = np.array([[4, 3], [2, 1]])
d = np.array([[1, 2], [3, 4]])
print(c*d)
# [[4 6]
#  [6 4]]

To obtain the result of matrix multiplication, you use np.dot (or @ in Python >= 3.5, as shown above):

print(np.dot(c,d))
# [[13 20]
#  [ 5  8]]

The ** operator also behaves differently:

print(a**2)
# [[22 15]
#  [10  7]]
print(c**2)
# [[16  9]
#  [ 4  1]]

Since a is a matrix, a**2 returns the matrix product a*a. Since c is an ndarray, c**2 returns an ndarray with each component squared element-wise.

There are other technical differences between matrix objects and ndarrays (having to do with np.ravel, item selection and sequence behavior).

The main advantage of numpy arrays is that they are more general than 2-dimensional matrices. What happens when you want a 3-dimensional array? Then you have to use an ndarray, not a matrix object. Thus, learning to use matrix objects is more work -- you have to learn matrix object operations, and ndarray operations.

Writing a program that mixes both matrices and arrays makes your life difficult because you have to keep track of what type of object your variables are, lest multiplication return something you don't expect.

In contrast, if you stick solely with ndarrays, then you can do everything matrix objects can do, and more, except with slightly different functions/notation.

If you are willing to give up the visual appeal of NumPy matrix product notation (which can be achieved almost as elegantly with ndarrays in Python >= 3.5), then I think NumPy arrays are definitely the way to go.

PS. Of course, you really don't have to choose one at the expense of the other, since np.asmatrix and np.asarray allow you to convert one to the other (as long as the array is 2-dimensional).


There is a synopsis of the differences between NumPy arrays vs NumPy matrixes here.

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to arrays

PHP array value passes to next row Use NSInteger as array index How do I show a message in the foreach loop? Objects are not valid as a React child. If you meant to render a collection of children, use an array instead Iterating over arrays in Python 3 Best way to "push" into C# array Sort Array of object by object field in Angular 6 Checking for duplicate strings in JavaScript array what does numpy ndarray shape do? How to round a numpy array?

Examples related to matrix

How to get element-wise matrix multiplication (Hadamard product) in numpy? How can I plot a confusion matrix? Error: stray '\240' in program What does the error "arguments imply differing number of rows: x, y" mean? How to input matrix (2D list) in Python? Difference between numpy.array shape (R, 1) and (R,) Counting the number of non-NaN elements in a numpy ndarray in Python Inverse of a matrix using numpy How to create an empty matrix in R? numpy matrix vector multiplication

Examples related to numpy

Unable to allocate array with shape and data type How to fix 'Object arrays cannot be loaded when allow_pickle=False' for imdb.load_data() function? Numpy, multiply array with scalar TypeError: only integer scalar arrays can be converted to a scalar index with 1D numpy indices array Could not install packages due to a "Environment error :[error 13]: permission denied : 'usr/local/bin/f2py'" Pytorch tensor to numpy array Numpy Resize/Rescale Image what does numpy ndarray shape do? How to round a numpy array? numpy array TypeError: only integer scalar arrays can be converted to a scalar index