I assume we are discussing division of integers.
Consider that I got two number 1502 and 30, and I wanted to calculate 1502/30. This is how we do this:
First we align 30 with 1501 at its most significant figure; 30 becomes 3000. And compare 1501 with 3000, 1501 contains 0 of 3000. Then we compare 1501 with 300, it contains 5 of 300, then compare (1501-5*300) with 30. At so at last we got 5*(10^1) = 50 as the result of this division.
Now convert both 1501 and 30 into binary digits. Then instead of multiplying 30 with (10^x) to align it with 1501, we multiplying (30) in 2 base with 2^n to align. And 2^n can be converted into left shift n positions.
Here is the code:
int divide(int a, int b){
if (b != 0)
return;
//To check if a or b are negative.
bool neg = false;
if ((a>0 && b<0)||(a<0 && b>0))
neg = true;
//Convert to positive
unsigned int new_a = (a < 0) ? -a : a;
unsigned int new_b = (b < 0) ? -b : b;
//Check the largest n such that b >= 2^n, and assign the n to n_pwr
int n_pwr = 0;
for (int i = 0; i < 32; i++)
{
if (((1 << i) & new_b) != 0)
n_pwr = i;
}
//So that 'a' could only contain 2^(31-n_pwr) many b's,
//start from here to try the result
unsigned int res = 0;
for (int i = 31 - n_pwr; i >= 0; i--){
if ((new_b << i) <= new_a){
res += (1 << i);
new_a -= (new_b << i);
}
}
return neg ? -res : res;
}
Didn't test it, but you get the idea.