It can also be solved using quaternion theory:
def angle_axis_quat(theta, axis):
"""
Given an angle and an axis, it returns a quaternion.
"""
axis = np.array(axis) / np.linalg.norm(axis)
return np.append([np.cos(theta/2)],np.sin(theta/2) * axis)
def mult_quat(q1, q2):
"""
Quaternion multiplication.
"""
q3 = np.copy(q1)
q3[0] = q1[0]*q2[0] - q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3]
q3[1] = q1[0]*q2[1] + q1[1]*q2[0] + q1[2]*q2[3] - q1[3]*q2[2]
q3[2] = q1[0]*q2[2] - q1[1]*q2[3] + q1[2]*q2[0] + q1[3]*q2[1]
q3[3] = q1[0]*q2[3] + q1[1]*q2[2] - q1[2]*q2[1] + q1[3]*q2[0]
return q3
def rotate_quat(quat, vect):
"""
Rotate a vector with the rotation defined by a quaternion.
"""
# Transfrom vect into an quaternion
vect = np.append([0],vect)
# Normalize it
norm_vect = np.linalg.norm(vect)
vect = vect/norm_vect
# Computes the conjugate of quat
quat_ = np.append(quat[0],-quat[1:])
# The result is given by: quat * vect * quat_
res = mult_quat(quat, mult_quat(vect,quat_)) * norm_vect
return res[1:]
v = [3, 5, 0]
axis = [4, 4, 1]
theta = 1.2
print(rotate_quat(angle_axis_quat(theta, axis), v))
# [2.74911638 4.77180932 1.91629719]