If you are looking for a rapid, normalized cross correlation in either one or two dimensions
I would recommend the openCV library (see http://opencv.willowgarage.com/wiki/ http://opencv.org/). The cross-correlation code maintained by this group is the fastest you will find, and it will be normalized (results between -1 and 1).
While this is a C++ library the code is maintained with CMake and has python bindings so that access to the cross correlation functions is convenient. OpenCV also plays nicely with numpy. If I wanted to compute a 2-D cross-correlation starting from numpy arrays I could do it as follows.
import numpy
import cv
#Create a random template and place it in a larger image
templateNp = numpy.random.random( (100,100) )
image = numpy.random.random( (400,400) )
image[:100, :100] = templateNp
#create a numpy array for storing result
resultNp = numpy.zeros( (301, 301) )
#convert from numpy format to openCV format
templateCv = cv.fromarray(numpy.float32(template))
imageCv = cv.fromarray(numpy.float32(image))
resultCv = cv.fromarray(numpy.float32(resultNp))
#perform cross correlation
cv.MatchTemplate(templateCv, imageCv, resultCv, cv.CV_TM_CCORR_NORMED)
#convert result back to numpy array
resultNp = np.asarray(resultCv)
For just a 1-D cross-correlation create a 2-D array with shape equal to (N, 1 ). Though there is some extra code involved to convert to an openCV format the speed-up over scipy is quite impressive.