As kichik wrote, this shouldn't be too complicated. However this code:
def frange(x, y, jump):
while x < y:
yield x
x += jump
Is inappropriate because of the cumulative effect of errors when working with floats. That is why you receive something like:
>>>list(frange(0, 100, 0.1))[-1]
99.9999999999986
While the expected behavior would be:
>>>list(frange(0, 100, 0.1))[-1]
99.9
The cumulative error can simply be reduced by using an index variable. Here's the example:
from math import ceil
def frange2(start, stop, step):
n_items = int(ceil((stop - start) / step))
return (start + i*step for i in range(n_items))
This example works as expected.
No nested functions. Only a while and a counter variable:
def frange3(start, stop, step):
res, n = start, 1
while res < stop:
yield res
res = start + n * step
n += 1
This function will work well too, except for the cases when you want the reversed range. E.g:
>>>list(frange3(1, 0, -.1))
[]
Solution 1 in this case will work as expected. To make this function work in such situations, you must apply a hack, similar to the following:
from operator import gt, lt
def frange3(start, stop, step):
res, n = start, 0.
predicate = lt if start < stop else gt
while predicate(res, stop):
yield res
res = start + n * step
n += 1
With this hack you can use these functions with negative steps:
>>>list(frange3(1, 0, -.1))
[1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.3999999999999999, 0.29999999999999993, 0.19999999999999996, 0.09999999999999998]
You can go even further with plain standard library and compose a range function for the most of numeric types:
from itertools import count
from itertools import takewhile
def any_range(start, stop, step):
start = type(start + step)(start)
return takewhile(lambda n: n < stop, count(start, step))
This generator is adapted from the Fluent Python book (Chapter 14. Iterables, Iterators and generators). It will not work with decreasing ranges. You must apply a hack, like in the previous solution.
You can use this generator as follows, for example:
>>>list(any_range(Fraction(2, 1), Fraction(100, 1), Fraction(1, 3)))[-1]
299/3
>>>list(any_range(Decimal('2.'), Decimal('4.'), Decimal('.3')))
[Decimal('2'), Decimal('2.3'), Decimal('2.6'), Decimal('2.9'), Decimal('3.2'), Decimal('3.5'), Decimal('3.8')]
And of course you can use it with float and int as well.
If you want to use these functions with negative steps, you should add a check for the step sign, e.g.:
no_proceed = (start < stop and step < 0) or (start > stop and step > 0)
if no_proceed: raise StopIteration
The best option here is to raise StopIteration
, if you want to mimic the range
function itself.
If you would like to mimic the range
function interface, you can provide some argument checks:
def any_range2(*args):
if len(args) == 1:
start, stop, step = 0, args[0], 1.
elif len(args) == 2:
start, stop, step = args[0], args[1], 1.
elif len(args) == 3:
start, stop, step = args
else:
raise TypeError('any_range2() requires 1-3 numeric arguments')
# here you can check for isinstance numbers.Real or use more specific ABC or whatever ...
start = type(start + step)(start)
return takewhile(lambda n: n < stop, count(start, step))
I think, you've got the point. You can go with any of these functions (except the very first one) and all you need for them is python standard library.