[c++] Calculate mean and standard deviation from a vector of samples in C++ using Boost

Is there a way to calculate mean and standard deviation for a vector containing samples using Boost?

Or do I have to create an accumulator and feed the vector into it?

This question is related to c++ algorithm boost statistics mean

The answer is


2x faster than the versions before mentioned - mostly because transform() and inner_product() loops are joined. Sorry about my shortcut/typedefs/macro: Flo = float. CR const ref. VFlo - vector. Tested in VS2010

#define fe(EL, CONTAINER)   for each (auto EL in CONTAINER)  //VS2010
Flo stdDev(VFlo CR crVec) {
    SZ  n = crVec.size();               if (n < 2) return 0.0f;
    Flo fSqSum = 0.0f, fSum = 0.0f;
    fe(f, crVec) fSqSum += f * f;       // EDIT: was Cit(VFlo, crVec) {
    fe(f, crVec) fSum   += f;
    Flo fSumSq      = fSum * fSum;
    Flo fSumSqDivN  = fSumSq / n;
    Flo fSubSqSum   = fSqSum - fSumSqDivN;
    Flo fPreSqrt    = fSubSqSum / (n - 1);
    return sqrt(fPreSqrt);
}

Improving on the answer by musiphil, you can write a standard deviation function without the temporary vector diff, just using a single inner_product call with the C++11 lambda capabilities:

double stddev(std::vector<double> const & func)
{
    double mean = std::accumulate(func.begin(), func.end(), 0.0) / func.size();
    double sq_sum = std::inner_product(func.begin(), func.end(), func.begin(), 0.0,
        [](double const & x, double const & y) { return x + y; },
        [mean](double const & x, double const & y) { return (x - mean)*(y - mean); });
    return std::sqrt(sq_sum / func.size());
}

I suspect doing the subtraction multiple times is cheaper than using up additional intermediate storage, and I think it is more readable, but I haven't tested the performance yet.


If performance is important to you, and your compiler supports lambdas, the stdev calculation can be made faster and simpler: In tests with VS 2012 I've found that the following code is over 10 X quicker than the Boost code given in the chosen answer; it's also 5 X quicker than the safer version of the answer using standard libraries given by musiphil.

Note I'm using sample standard deviation, so the below code gives slightly different results (Why there is a Minus One in Standard Deviations)

double sum = std::accumulate(std::begin(v), std::end(v), 0.0);
double m =  sum / v.size();

double accum = 0.0;
std::for_each (std::begin(v), std::end(v), [&](const double d) {
    accum += (d - m) * (d - m);
});

double stdev = sqrt(accum / (v.size()-1));

My answer is similar as Josh Greifer but generalised to sample covariance. Sample variance is just sample covariance but with the two inputs identical. This includes Bessel's correlation.

    template <class Iter> typename Iter::value_type cov(const Iter &x, const Iter &y)
    {
        double sum_x = std::accumulate(std::begin(x), std::end(x), 0.0);
        double sum_y = std::accumulate(std::begin(y), std::end(y), 0.0);

        double mx =  sum_x / x.size();
        double my =  sum_y / y.size();

        double accum = 0.0;

        for (auto i = 0; i < x.size(); i++)
        {
            accum += (x.at(i) - mx) * (y.at(i) - my);
        }

        return accum / (x.size() - 1);
    }

Create your own container:

template <class T>
class statList : public std::list<T>
{
    public:
        statList() : std::list<T>::list() {}
        ~statList() {}
        T mean() {
           return accumulate(begin(),end(),0.0)/size();
        }
        T stddev() {
           T diff_sum = 0;
           T m = mean();
           for(iterator it= begin(); it != end(); ++it)
               diff_sum += ((*it - m)*(*it -m));
           return diff_sum/size();
        }
};

It does have some limitations, but it works beautifully when you know what you are doing.


It seems the following elegant recursive solution has not been mentioned, although it has been around for a long time. Referring to Knuth's Art of Computer Programming,

mean_1 = x_1, variance_1 = 0;            //initial conditions; edge case;

//for k >= 2, 
mean_k     = mean_k-1 + (x_k - mean_k-1) / k;
variance_k = variance_k-1 + (x_k - mean_k-1) * (x_k - mean_k);

then for a list of n>=2 values, the estimate of the standard deviation is:

stddev = std::sqrt(variance_n / (n-1)). 

Hope this helps!


I don't know if Boost has more specific functions, but you can do it with the standard library.

Given std::vector<double> v, this is the naive way:

#include <numeric>

double sum = std::accumulate(v.begin(), v.end(), 0.0);
double mean = sum / v.size();

double sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
double stdev = std::sqrt(sq_sum / v.size() - mean * mean);

This is susceptible to overflow or underflow for huge or tiny values. A slightly better way to calculate the standard deviation is:

double sum = std::accumulate(v.begin(), v.end(), 0.0);
double mean = sum / v.size();

std::vector<double> diff(v.size());
std::transform(v.begin(), v.end(), diff.begin(),
               std::bind2nd(std::minus<double>(), mean));
double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
double stdev = std::sqrt(sq_sum / v.size());

UPDATE for C++11:

The call to std::transform can be written using a lambda function instead of std::minus and std::bind2nd(now deprecated):

std::transform(v.begin(), v.end(), diff.begin(), [mean](double x) { return x - mean; });

//means deviation in c++

/A deviation that is a difference between an observed value and the true value of a quantity of interest (such as a population mean) is an error and a deviation that is the difference between the observed value and an estimate of the true value (such an estimate may be a sample mean) is a residual. These concepts are applicable for data at the interval and ratio levels of measurement./

#include <iostream>
#include <conio.h>
using namespace std;

/* run this program using the console pauser or add your own getch,     system("pause") or input loop */

int main(int argc, char** argv)
{
int i,cnt;
cout<<"please inter count:\t";
cin>>cnt;
float *num=new float [cnt];
float   *s=new float [cnt];
float sum=0,ave,M,M_D;

for(i=0;i<cnt;i++)
{
    cin>>num[i];
    sum+=num[i];    
}
ave=sum/cnt;
for(i=0;i<cnt;i++)
{
s[i]=ave-num[i];    
if(s[i]<0)
{
s[i]=s[i]*(-1); 
}
cout<<"\n|ave - number| = "<<s[i];  
M+=s[i];    
}
M_D=M/cnt;
cout<<"\n\n Average:             "<<ave;
cout<<"\n M.D(Mean Deviation): "<<M_D;
getch();
return 0;

}


Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to algorithm

How can I tell if an algorithm is efficient? Find the smallest positive integer that does not occur in a given sequence Efficiently getting all divisors of a given number Peak signal detection in realtime timeseries data What is the optimal algorithm for the game 2048? How can I sort a std::map first by value, then by key? Finding square root without using sqrt function? Fastest way to flatten / un-flatten nested JSON objects Mergesort with Python Find common substring between two strings

Examples related to boost

CMake is not able to find BOOST libraries version `CXXABI_1.3.8' not found (required by ...) Already defined in .obj - no double inclusions C++ Boost: undefined reference to boost::system::generic_category() fatal error LNK1104: cannot open file 'libboost_system-vc110-mt-gd-1_51.lib' How to install Boost on Ubuntu Calculate rolling / moving average in C++ undefined reference to boost::system::system_category() when compiling Calculate mean and standard deviation from a vector of samples in C++ using Boost Get current time in milliseconds using C++ and Boost

Examples related to statistics

Function to calculate R2 (R-squared) in R pandas: find percentile stats of a given column What exactly does numpy.exp() do? Find p-value (significance) in scikit-learn LinearRegression How to plot ROC curve in Python Pandas - Compute z-score for all columns Calculating percentile of dataset column How to normalize an array in NumPy to a unit vector? How to find row number of a value in R code np.mean() vs np.average() in Python NumPy?

Examples related to mean

Python Pandas : group by in group by and average? Mean of a column in a data frame, given the column's name calculate the mean for each column of a matrix in R np.mean() vs np.average() in Python NumPy? Mean Squared Error in Numpy? Calculate mean across dimension in a 2D array Calculating arithmetic mean (one type of average) in Python Calculate mean and standard deviation from a vector of samples in C++ using Boost