[python] Save classifier to disk in scikit-learn

sklearn estimators implement methods to make it easy for you to save relevant trained properties of an estimator. Some estimators implement __getstate__ methods themselves, but others, like the GMM just use the base implementation which simply saves the objects inner dictionary:

def __getstate__(self):
    try:
        state = super(BaseEstimator, self).__getstate__()
    except AttributeError:
        state = self.__dict__.copy()

    if type(self).__module__.startswith('sklearn.'):
        return dict(state.items(), _sklearn_version=__version__)
    else:
        return state

The recommended method to save your model to disc is to use the pickle module:

from sklearn import datasets
from sklearn.svm import SVC
iris = datasets.load_iris()
X = iris.data[:100, :2]
y = iris.target[:100]
model = SVC()
model.fit(X,y)
import pickle
with open('mymodel','wb') as f:
    pickle.dump(model,f)

However, you should save additional data so you can retrain your model in the future, or suffer dire consequences (such as being locked into an old version of sklearn).

From the documentation:

In order to rebuild a similar model with future versions of scikit-learn, additional metadata should be saved along the pickled model:

The training data, e.g. a reference to a immutable snapshot

The python source code used to generate the model

The versions of scikit-learn and its dependencies

The cross validation score obtained on the training data

This is especially true for Ensemble estimators that rely on the tree.pyx module written in Cython(such as IsolationForest), since it creates a coupling to the implementation, which is not guaranteed to be stable between versions of sklearn. It has seen backwards incompatible changes in the past.

If your models become very large and loading becomes a nuisance, you can also use the more efficient joblib. From the documentation:

In the specific case of the scikit, it may be more interesting to use joblib’s replacement of pickle (joblib.dump & joblib.load), which is more efficient on objects that carry large numpy arrays internally as is often the case for fitted scikit-learn estimators, but can only pickle to the disk and not to a string:

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to machine-learning

Error in Python script "Expected 2D array, got 1D array instead:"? How to predict input image using trained model in Keras? What is the role of "Flatten" in Keras? How to concatenate two layers in keras? How to save final model using keras? scikit-learn random state in splitting dataset Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? What is the meaning of the word logits in TensorFlow? Can anyone explain me StandardScaler? Can Keras with Tensorflow backend be forced to use CPU or GPU at will?

Examples related to scikit-learn

LabelEncoder: TypeError: '>' not supported between instances of 'float' and 'str' UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples scikit-learn random state in splitting dataset LogisticRegression: Unknown label type: 'continuous' using sklearn in python Can anyone explain me StandardScaler? ImportError: No module named model_selection How to split data into 3 sets (train, validation and test)? How to convert a Scikit-learn dataset to a Pandas dataset? Accuracy Score ValueError: Can't Handle mix of binary and continuous target How can I plot a confusion matrix?

Examples related to classification

FailedPreconditionError: Attempting to use uninitialized in Tensorflow Scikit-learn train_test_split with indices Scikit-learn: How to obtain True Positive, True Negative, False Positive and False Negative What are advantages of Artificial Neural Networks over Support Vector Machines? Save classifier to disk in scikit-learn A simple explanation of Naive Bayes Classification Difference between classification and clustering in data mining?