[machine-learning] What are advantages of Artificial Neural Networks over Support Vector Machines?

Judging from the examples you provide, I'm assuming that by ANNs, you mean multilayer feed-forward networks (FF nets for short), such as multilayer perceptrons, because those are in direct competition with SVMs.

One specific benefit that these models have over SVMs is that their size is fixed: they are parametric models, while SVMs are non-parametric. That is, in an ANN you have a bunch of hidden layers with sizes h1 through hn depending on the number of features, plus bias parameters, and those make up your model. By contrast, an SVM (at least a kernelized one) consists of a set of support vectors, selected from the training set, with a weight for each. In the worst case, the number of support vectors is exactly the number of training samples (though that mainly occurs with small training sets or in degenerate cases) and in general its model size scales linearly. In natural language processing, SVM classifiers with tens of thousands of support vectors, each having hundreds of thousands of features, is not unheard of.

Also, online training of FF nets is very simple compared to online SVM fitting, and predicting can be quite a bit faster.

EDIT: all of the above pertains to the general case of kernelized SVMs. Linear SVM are a special case in that they are parametric and allow online learning with simple algorithms such as stochastic gradient descent.

Examples related to machine-learning

Error in Python script "Expected 2D array, got 1D array instead:"? How to predict input image using trained model in Keras? What is the role of "Flatten" in Keras? How to concatenate two layers in keras? How to save final model using keras? scikit-learn random state in splitting dataset Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? What is the meaning of the word logits in TensorFlow? Can anyone explain me StandardScaler? Can Keras with Tensorflow backend be forced to use CPU or GPU at will?

Examples related to neural-network

How to initialize weights in PyTorch? Keras input explanation: input_shape, units, batch_size, dim, etc What is the role of "Flatten" in Keras? How to concatenate two layers in keras? Why binary_crossentropy and categorical_crossentropy give different performances for the same problem? What is the meaning of the word logits in TensorFlow? How to return history of validation loss in Keras Keras model.summary() result - Understanding the # of Parameters Where do I call the BatchNormalization function in Keras? How to interpret "loss" and "accuracy" for a machine learning model

Examples related to classification

FailedPreconditionError: Attempting to use uninitialized in Tensorflow Scikit-learn train_test_split with indices Scikit-learn: How to obtain True Positive, True Negative, False Positive and False Negative What are advantages of Artificial Neural Networks over Support Vector Machines? Save classifier to disk in scikit-learn A simple explanation of Naive Bayes Classification Difference between classification and clustering in data mining?

Examples related to svm

What are advantages of Artificial Neural Networks over Support Vector Machines?