One obvious advantage of artificial neural networks over support vector machines is that artificial neural networks may have any number of outputs, while support vector machines have only one. The most direct way to create an n-ary classifier with support vector machines is to create n support vector machines and train each of them one by one. On the other hand, an n-ary classifier with neural networks can be trained in one go. Additionally, the neural network will make more sense because it is one whole, whereas the support vector machines are isolated systems. This is especially useful if the outputs are inter-related.
For example, if the goal was to classify hand-written digits, ten support vector machines would do. Each support vector machine would recognize exactly one digit, and fail to recognize all others. Since each handwritten digit cannot be meant to hold more information than just its class, it makes no sense to try to solve this with an artificial neural network.
However, suppose the goal was to model a person's hormone balance (for several hormones) as a function of easily measured physiological factors such as time since last meal, heart rate, etc ... Since these factors are all inter-related, artificial neural network regression makes more sense than support vector machine regression.