Ted's answer is amazing. I ended up using a smaller version of that in case anyone is interested. Useful when you are looking for one aggregation that depends on values from multiple columns:
df=pd.DataFrame({'a': [1,2,3,4,5,6], 'b': [1,1,0,1,1,0], 'c': ['x','x','y','y','z','z']})
a b c
0 1 1 x
1 2 1 x
2 3 0 y
3 4 1 y
4 5 1 z
5 6 0 z
df.groupby('c').apply(lambda x: x['a'][(x['a']>1) & (x['b']==1)].mean())
c
x 2.0
y 4.0
z 5.0
I like this approach since I can still use aggregate. Perhaps people will let me know why apply is needed for getting at multiple columns when doing aggregations on groups.
It seems obvious now, but as long as you don't select the column of interest directly after the groupby, you will have access to all the columns of the dataframe from within your aggregation function.
df.groupby('c')['a'].aggregate(lambda x: x[x>1].mean())
df.groupby('c').aggregate(lambda x: x[(x['a']>1) & (x['b']==1)].mean())['a']
df.groupby('c').aggregate(lambda x: x['a'][(x['a']>1) & (x['b']==1)].mean())
I hope this helps.