

SyntaxFix

Write A Post

Hire A Developer

Questions

Tags

🔍

 [python] Create PDF from a list of images

	
Home

	

	

 Question

	
	
 Create PDF from a list of images

Is there any practical way to create a PDF from a list of images files, using Python?

In Perl I know that module. With it I can create a PDF in just 3 lines:

use PDF::FromImage;
...
my $pdf = PDF::FromImage->new;
$pdf->load_images(@allPagesDir);
$pdf->write_file($bookName . '.pdf');

I need to do something very similar to this, but in Python. I know the pyPdf module, but I would like something simple.

@Edit

If you came through Google, here's the code:

from fpdf import FPDF
from PIL import Image
def makePdf(pdfFileName, listPages, dir = ''):
 if (dir):
 dir += "/"

 cover = Image.open(dir + str(listPages[0]) + ".jpg")
 width, height = cover.size

 pdf = FPDF(unit = "pt", format = [width, height])

 for page in listPages:
 pdf.add_page()
 pdf.image(dir + str(page) + ".jpg", 0, 0)

 pdf.output(dir + pdfFileName + ".pdf", "F")

This question is related to
python
pdf

The answer is

I had the same problem, so I created a python function to unite multiple pictures in one pdf. The code (available from my github page, uses reportlab, and is based on answers from the following links:

	Create PDF from a list of images
	Combining multiple pngs in a single pdf in python
	png images to one pdf in python
	How can I convert all JPG files in a folder to PDFs and combine them?
	https://www.blog.pythonlibrary.org/2012/01/07/reportlab-converting-hundreds-of-images-into-pdfs/

Here is example of how to unite images into pdf:

We have folder "D:\pictures" with pictures of types png and jpg, and we want to create file pdf_with_pictures.pdf out of them and save it in the same folder.

outputPdfName = "pdf_with_pictures"
pathToSavePdfTo = "D:\\pictures"
pathToPictures = "D:\\pictures"
splitType = "none"
numberOfEntitiesInOnePdf = 1
listWithImagesExtensions = ["png", "jpg"]
picturesAreInRootFolder = True
nameOfPart = "volume"

unite_pictures_into_pdf(outputPdfName, pathToSavePdfTo, pathToPictures, splitType, numberOfEntitiesInOnePdf, listWithImagesExtensions, picturesAreInRootFolder, nameOfPart)

Here is ilovecomputer's answer packed into a function and directly usable. It also allows to reduce image sizes and works well.

The code assumes a folder inside input_dir that contains images ordered alphabetically by their name and outputs a pdf with the name of the folder and potentially a prefix string for the name.

import os
from PIL import Image

def convert_images_to_pdf(export_dir, input_dir, folder, prefix='', quality=20):
 current_dir = os.path.join(input_dir, folder)
 image_files = os.listdir(current_dir)
 im_list = [Image.open(os.path.join(current_dir, image_file)) for image_file in image_files]

 pdf_filename = os.path.join(export_dir, prefix + folder + '.pdf')
 im_list[0].save(pdf_filename, "PDF", quality=quality, optimize=True, save_all=True, append_images=im_list[1:])

export_dir = r"D:\pdfs"
input_dir = r"D:\image_folders"
folders = os.listdir(input_dir)
[convert_images_to_pdf(export_dir, input_dir, folder, prefix='') for folder in folders];

What worked for me in python 3.7 and img2pdf version 0.4.0 was to use something similar to the code given by Syed Shamikh Shabbir but changing the current working directory using OS as Stu suggested in his comment to Syed's solution

import os
import img2pdf

path = './path/to/folder'
os.chdir(path)
images = [i for i in os.listdir(os.getcwd()) if i.endswith(".jpg")]

for image in images:
 with open(image[:-4] + ".pdf", "wb") as f:
 f.write(img2pdf.convert(image))

It is worth mentioning this solution above saves each .jpg separately in one single pdf. If you want all your .jpg files together in only one .pdf you could do:

import os
import img2pdf

path = './path/to/folder'
os.chdir(path)
images = [i for i in os.listdir(os.getcwd()) if i.endswith(".jpg")]

with open("output.pdf", "wb") as f:
 f.write(img2pdf.convert(images))

If your images are plots you created mith matplotlib, you can use matplotlib.backends.backend_pdf.PdfPages (See documentation).

import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages

generate a list with dummy plots
figs = []
for i in [-1, 1]:
 fig = plt.figure()
 plt.plot([1, 2, 3], [i*1, i*2, i*3])
 figs.append(fig)

gerate a multipage pdf:
with PdfPages('multipage_pdf.pdf') as pdf:
 for fig in figs:
 pdf.savefig(fig)
 plt.close()

I know the question has been answered but one more way to solve this is using the pillow library.
To convert a whole directory of images:

from PIL import Image
import os

def makePdf(imageDir, SaveToDir):
 '''
 imageDir: Directory of your images
 SaveToDir: Location Directory for your pdfs
 '''
 os.chdir(imageDir)
 try:
 for j in os.listdir(os.getcwd()):
 os.chdir(imageDir)
 fname, fext = os.path.splitext(j)
 newfilename = fname + ".pdf"
 im = Image.open(fname + fext)
 if im.mode == "RGBA":
 im = im.convert("RGB")
 os.chdir(SaveToDir)
 if not os.path.exists(newfilename):
 im.save(newfilename, "PDF", resolution=100.0)
 except Exception as e:
 print(e)

imageDir = r'____' # your imagedirectory path
SaveToDir = r'____' # diretory in which you want to save the pdfs
makePdf(imageDir, SaveToDir)

For using it on an single image:

From PIL import Image
import os

filename = r"/Desktop/document/dog.png"
im = Image.open(filename)
if im.mode == "RGBA":
 im = im.convert("RGB")
new_filename = r"/Desktop/document/dog.pdf"
if not os.path.exists(new_filename):
 im.save(new_filename,"PDF",resolution=100.0)

The best answer already exists !!! I am just improving the answer a little bit.
Here's the code :

from fpdf import FPDF
pdf = FPDF()
imagelist is the list with all image filenames you can create using os module by iterating all the files in a folder or by specifying their name
for image in imagelist:
 pdf.add_page()
 pdf.image(image,x=0,y=0,w=210,h=297) # for A4 size because some people said that every other page is blank
pdf.output("yourfile.pdf", "F")

You'll need to install FPDF for this purpose.

pip install FPDF

first pip install pillow in command line Interface.
Images can be in jpg or png format. if you have 2 or more images and want to make in 1 pdf file.

Code:

from PIL import Image

image1 = Image.open(r'locationOfImage1\\Image1.png')
image2 = Image.open(r'locationOfImage2\\Image2.png')
image3 = Image.open(r'locationOfImage3\\Image3.png')

im1 = image1.convert('RGB')
im2 = image2.convert('RGB')
im3 = image3.convert('RGB')

imagelist = [im2,im3]

im1.save(r'locationWherePDFWillBeSaved\\CombinedPDF.pdf',save_all=True, append_images=imagelist)

Some changes to make a pdf from the dir where the files are

I take the code and made some slight change to make it useable as it is.

from fpdf import FPDF
from PIL import Image
import os # I added this and the code at the end

def makePdf(pdfFileName, listPages, dir=''):
 if (dir):
 dir += "/"

 cover = Image.open(dir + str(listPages[0]))
 width, height = cover.size

 pdf = FPDF(unit="pt", format=[width, height])

 for page in listPages:
 pdf.add_page()
 pdf.image(dir + str(page), 0, 0)

 pdf.output(dir + pdfFileName + ".pdf", "F")

this is what I added
x = [f for f in os.listdir() if f.endswith(".jpg")]
y = len(x)

makePdf("file", x)

How about this??

from fpdf import FPDF
from PIL import Image
import glob
import os

set here
image_directory = '/path/to/imageDir'
extensions = ('*.jpg','*.png','*.gif') #add your image extentions
set 0 if you want to fit pdf to image
unit : pt
margin = 10

imagelist=[]
for ext in extensions:
 imagelist.extend(glob.glob(os.path.join(image_directory,ext)))

for imagePath in imagelist:
 cover = Image.open(imagePath)
 width, height = cover.size

pdf = FPDF(unit="pt", format=[width + 2*margin, height + 2*margin])
pdf.add_page()

pdf.image(imagePath, margin, margin)

destination = os.path.splitext(imagePath)[0]
pdf.output(destination + ".pdf", "F")

Ready-to-use solution that converts all PNG in the current folder to a PDF, inspired by @ilovecomputer's answer:

import glob, PIL.Image
L = [PIL.Image.open(f) for f in glob.glob('*.png')]
L[0].save('out.pdf', "PDF" ,resolution=100.0, save_all=True, append_images=L[1:])

Nothing else than PIL is needed :)

**** Convert images files to pdf file.****
from os import listdir
from fpdf import FPDF

path = "/home/bunny/images/" # get the path of images

imagelist = listdir(path) # get list of all images

pdf = FPDF('P','mm','A4') # create an A4-size pdf document

x,y,w,h = 0,0,200,250

for image in imagelist:

 pdf.add_page()
 pdf.image(path+image,x,y,w,h)

pdf.output("images.pdf","F")

If you use Python 3, you can use the python module img2pdf

install it using pip3 install img2pdf and then you can use it in a script
using import img2pdf

sample code

import os
import img2pdf

with open("output.pdf", "wb") as f:
 f.write(img2pdf.convert([i for i in os.listdir('path/to/imageDir') if i.endswith(".jpg")]))

or (If you get any error with previous approach due to some path issue)

convert all files matching a glob
import glob
with open("name.pdf","wb") as f:
 f.write(img2pdf.convert(glob.glob("/path/to/*.jpg")))

pgmagick is a GraphicsMagick(Magick++) binding for Python.

It's is a Python wrapper for for ImageMagick (or GraphicsMagick).

import os
from os import listdir
from os.path import isfile, join
from pgmagick import Image

mypath = "\Images" # path to your Image directory

for each_file in listdir(mypath):
 if isfile(join(mypath,each_file)):
 image_path = os.path.join(mypath,each_file)
 pdf_path = os.path.join(mypath,each_file.rsplit('.', 1)[0]+'.pdf')
 img = Image(image_path)
 img.write(pdf_path)

Sample input Image:

PDF looks like this:

pgmagick iinstallation instruction for windows:

1) Download precompiled binary packages from the Unofficial Windows Binaries for Python Extension Packages (as mentioned in the pgmagick web page) and install it.

Note:
Try to download correct version corresponding to your python version installed in your machine and whether its 32bit installation or 64bit.

You can check whether you have 32bit or 64bit python by just typing python at your terminal and press Enter..

D:\>python
ActivePython 2.7.2.5 (ActiveState Software Inc.) based on
Python 2.7.2 (default, Jun 24 2011, 12:21:10) [MSC v.1500 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.

So it has python version 2.7 and its of 32 bit (Intel)] on win32 so you have to downlad and install pgmagick-0.5.8.win32-py2.7.exe.

These are the following available Python Extension Packages for pgmagick:

	pgmagick-0.5.8.win-amd64-py2.6.exe
	pgmagick-0.5.8.win-amd64-py2.7.exe
	pgmagick-0.5.8.win-amd64-py3.2.exe
	pgmagick-0.5.8.win32-py2.6.exe
	pgmagick-0.5.8.win32-py2.7.exe
	pgmagick-0.5.8.win32-py3.2.exe

2) Then you can follow installation instruction from here.

pip install pgmagick

An then try to import it.

>>> from pgmagick import gminfo
>>> gminfo.version
'1.3.x'
>>> gminfo.library
'GraphicsMagick'
>>>

If your images are in landscape mode, you can do like this.

from fpdf import FPDF
import os, sys, glob
from tqdm import tqdm

pdf = FPDF('L', 'mm', 'A4')
im_width = 1920
im_height = 1080

aspect_ratio = im_height/im_width
page_width = 297
page_height = aspect_ratio * page_width
page_height = 200
left_margin = 0
right_margin = 0

imagelist is the list with all image filenames
for image in tqdm(sorted(glob.glob('test_images/*.png'))):
pdf.add_page()
pdf.image(image, left_margin, right_margin, page_width, page_height)
pdf.output("mypdf.pdf", "F")
print('Conversion completed!')

Here page_width and page_height is the size of 'A4' paper where in landscape its width will 297mm and height will be 210mm; but here I have adjusted the height as per my image. OR you can use either maintaining the aspect ratio as I have commented above for proper scaling of both width and height of the image.

I know this is an old question. In my case I use Reportlab.

Sheet dimensions are expressed in points, not pixels, with a point equal to 1/72 inch. An A4 sheet is made up of 595.2 points width and 841.8 points height. The origin of the position coordinates (0, 0) is in the lower left corner. When creating an instance of canvas.Canvas, you can specify the size of the sheets using the pagesize parameter, passing a tuple whose first element represents the width in points and the second, the height.
The c.showPage () method tells ReportLab that it has already finished working on the current sheet and moves on to the next one. Although a second sheet has not yet been worked on (and will not appear in the document as long as nothing has been drawn) it is good practice to remember to do so before invoking c.save (). To insert images into a PDF document, ReportLab uses the Pillow library. The drawImage () method takes as its argument the path of an image (supports multiple formats such as PNG, JPEG and GIF) and the position (x, y) in the that you want to insert. The image can be reduced or enlarged indicating its dimensions via the width and height arguments.

The following code provides pdf file name, list with png files, coordinates to insert images as well as size to fit in portrait letter pages.

def pntopd(file, figs, x, y, wi, he):
 from reportlab.pdfgen import canvas
 from reportlab.lib.pagesizes import A4, letter, landscape, portrait
 w, h = letter
 c = canvas.Canvas(str(file), pagesize=portrait(letter))
 for png in figs:
 c.drawImage(png, x, h - y, width=wi, height=he)
 c.showPage()
 c.save()

from datetime import date
from pathlib import Path
ruta = "C:/SQLite"
today = date.today()
dat_dir = Path(ruta)
tit = today.strftime("%y%m%d") + '_ParameterAudit'
pdf_file = tit + ".pdf"
pdf_path = dat_dir / pdf_file
pnglist = ['C0.png', 'C4387.png', 'C9712.png', 'C9685.png', 'C4364.png']
pntopd(pdf_path, pnglist, 50, 550, 500, 500)

It's not a truly new answer, but - when using img2pdf the page size didn't come out right. So here's what I did to use the image size, I hope it finds someone well:

assuming 1) all images are the same size, 2) placing one image per page, 3) image fills the whole page

from PIL import Image
import img2pdf

with open('output.pdf', 'wb') as f:
 img = Image.open('1.jpg')
 my_layout_fun = img2pdf.get_layout_fun(
 pagesize = (img2pdf.px_to_pt(img.width, 96), img2pdf.px_to_pt(img.height, 96)), # this is where image size is used; 96 is dpi value
 fit = img2pdf.FitMode.into # I didn't have to specify this, but just in case...
)
 f.write(img2pdf.convert(['1.jpg', '2.jpg', '3.jpg'], layout_fun = my_layout_fun))

The best method to convert multiple images to PDF I have tried so far is to use PIL purely. It's quite simple yet powerful:

from PIL import Image

im1 = Image.open("/Users/apple/Desktop/bbd.jpg")
im2 = Image.open("/Users/apple/Desktop/bbd1.jpg")
im3 = Image.open("/Users/apple/Desktop/bbd2.jpg")
im_list = [im2,im3]

pdf1_filename = "/Users/apple/Desktop/bbd1.pdf"

im1.save(pdf1_filename, "PDF" ,resolution=100.0, save_all=True, append_images=im_list)

Just set save_all to True and append_images to the list of images which you want to add.

You might encounter the AttributeError: 'JpegImageFile' object has no attribute 'encoderinfo'. The solution is here Error while saving multiple JPEGs as a multi-page PDF

Note:Install the newest PIL to make sure save_all argument is available for PDF.

Source: Stackoverflow.com

Examples related to python

• programming a servo thru a barometer
• Is there a way to view two blocks of code from the same file simultaneously in Sublime Text?
• python variable NameError
• Why my regexp for hyphenated words doesn't work?
• Comparing a variable with a string python not working when redirecting from bash script
• is it possible to add colors to python output?
• Get Public URL for File - Google Cloud Storage - App Engine (Python)
• Real time face detection OpenCV, Python
• xlrd.biffh.XLRDError: Excel xlsx file; not supported
• Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation
Examples related to pdf

• ImageMagick security policy 'PDF' blocking conversion
• How to extract table as text from the PDF using Python?
• Extract a page from a pdf as a jpeg
• How can I read pdf in python?
• Generating a PDF file from React Components
• Extract Data from PDF and Add to Worksheet
• How to extract text from a PDF file?
• How to download PDF automatically using js?
• Download pdf file using jquery ajax
• Generate PDF from HTML using pdfMake in Angularjs

Tags

Generic-interface
Hebrew
Taskfactory
Function-module
Json-rpc
Anemic-domain-model
Ipfw
Where
Initialization-vector
Sieve-of-eratosthenes
Dataguard
Online-forms
Anonymous-users
Utility
Out
Shortcut
Absolute
Google-maps-api-3
Sshd
Zend-db-table
Tdxmemdata
Servletexception
Sametime
Nimble
Skew
Cfgridcolumn
Math
Spring-oxm
Ieee-754
Commercial-application
Shorttags
Functional-dependencies
Focusable
Jquery-ui-resizable
Core-api
Idioms
Utc
Forward-declaration
Rabin
Contact-list
Country-codes
Setw
Ramdisk
Iconvertible
Usercall
Windows-principal
Value-initialization
Smack
Yarv
Xpointer
Texttrimming
Filemap
Innerxhtml
Jprobe
Httpd.conf
Undefined-reference
Design-view
Ggplot2
Mu
Uialertview
My-namespace
Callback
Wm-paint
Integration-testing
Poller
Png-24
Installutil
Boost-any
Attoparsec
Robocup
Isapi-extension
Django-context
Grouplayout
Leftist-tree
Redraw
Date-comparison
Flood-fill
Postdata
Silverlight-2-rc0
Bison
Bundle
Idocscript
Navigationwindow
Space
Weblogic11g
Offsetwidth
Jarjar
Webproject
Design-patterns
Cgbitmapcontextcreate
Mobility
Playsound
Authkit
Keyboardfocusmanager
Uno
Part-of-speech
Cocoa
Tapestry
Google-reader
Ppi

JavaScript |
Python |
NodeJS |
HTML |
Java |
MongoDB |
Ruby |
Oracle |
CSS |
Android |
SQL Server

user contributions licensed under cc by-sa 3.0

SyntaxFix |
Privacy Policy |
Contact Us

