

SyntaxFix

Write A Post

Hire A Developer

Questions

Tags

🔍

 [excel] Extract Data from PDF and Add to Worksheet

	
Home

	

	

 Question

	
	
 Extract Data from PDF and Add to Worksheet

I am trying to extract the data from a PDF document into a worksheet. The PDFs show and text can be manually copied and pasted into the Excel document.

I am currently doing this through SendKeys and it is not working. I get an error when I try to paste the data from the PDF document. Why is my paste not working? If I paste after the macro has stopped running it pastes as normal.

Dim myPath As String, myExt As String
Dim ws As Worksheet
Dim openPDF As Object
'Dim pasteData As MSForms.DataObject
Dim fCell As Range

'Set pasteData = New MSForms.DataObject
Set ws = Sheets("DATA")
If ws.Cells(ws.Rows.Count, "A").End(xlUp).Row > 1 Then Range("A3:A" & ws.Cells(ws.Rows.Count, "A").End(xlUp).Row).ClearContents

myExt = "*.pdf"
'When Scan Receipts Button Pressed Scan the selected folder/s for receipts
For Each fCell In Range(ws.Cells(1, 1), ws.Cells(1, ws.Cells(1, ws.Columns.Count).End(xlToLeft).Column))
 myPath = Dir(fCell.Value & myExt)
 Do While myPath <> ""
 myPath = fCell.Value & "\" & myPath
 Set openPDF = CreateObject("Shell.Application")
 openPDF.Open (myPath)
 Application.Wait Now + TimeValue("00:00:2")
 SendKeys "^a"
 Application.Wait Now + TimeValue("00:00:2")
 SendKeys "^c"
 'Application.Wait Now + TimeValue("00:00:2")
 ws.Select
 ActiveSheet.Paste
 'pasteData.GetFromClipboard

 'ws.Cells(3, 1) = pasteData.GetText
 Exit Sub

 myPath = Dir
 Loop

Next fCell

This question is related to
excel
vba
pdf

The answer is

You can open the PDF file and extract its contents using the Adobe library (which I believe you can download from Adobe as part of the SDK, but it comes with certain versions of Acrobat as well)

Make sure to add the Library to your references too (On my machine it is the Adobe Acrobat 10.0 Type Library, but not sure if that is the newest version)

Even with the Adobe library it is not trivial (you'll need to add your own error-trapping etc):

Function getTextFromPDF(ByVal strFilename As String) As String
 Dim objAVDoc As New AcroAVDoc
 Dim objPDDoc As New AcroPDDoc
 Dim objPage As AcroPDPage
 Dim objSelection As AcroPDTextSelect
 Dim objHighlight As AcroHiliteList
 Dim pageNum As Long
 Dim strText As String

 strText = ""
 If (objAvDoc.Open(strFilename, "") Then
 Set objPDDoc = objAVDoc.GetPDDoc
 For pageNum = 0 To objPDDoc.GetNumPages() - 1
 Set objPage = objPDDoc.AcquirePage(pageNum)
 Set objHighlight = New AcroHiliteList
 objHighlight.Add 0, 10000 ' Adjust this up if it's not getting all the text on the page
 Set objSelection = objPage.CreatePageHilite(objHighlight)

 If Not objSelection Is Nothing Then
 For tCount = 0 To objSelection.GetNumText - 1
 strText = strText & objSelection.GetText(tCount)
 Next tCount
 End If
 Next pageNum
 objAVDoc.Close 1
 End If

 getTextFromPDF = strText

End Function

What this does is essentially the same thing you are trying to do - only using Adobe's own library. It's going through the PDF one page at a time, highlighting all of the text on the page, then dropping it (one text element at a time) into a string.

Keep in mind what you get from this could be full of all kinds of non-printing characters (line feeds, newlines, etc) that could even end up in the middle of what look like contiguous blocks of text, so you may need additional code to clean it up before you can use it.

Hope that helps!

This doesn't seem to work with the Adobe Type library. As soon as it gets to Open, I get a 429 error. Acrobat works fine though...

To improve the solution of Slinky Sloth I had to add this beforere get from clipboard :

Set objPDF = New MSForms.DataObject

Sadly it didn't worked for a pdf of 10 pages.

Since I do not prefer to rely on external libraries and/or other programs, I have extended your solution so that it works.
The actual change here is using the GetFromClipboard function instead of Paste which is mainly used to paste a range of cells.
Of course, the downside is that the user must not change focus or intervene during the whole process.

Dim pathPDF As String, textPDF As String
Dim openPDF As Object
Dim objPDF As MsForms.DataObject

pathPDF = "C:\some\path\data.pdf"
Set openPDF = CreateObject("Shell.Application")
openPDF.Open (pathPDF)
'TIME TO WAIT BEFORE/AFTER COPY AND PASTE SENDKEYS
Application.Wait Now + TimeValue("00:00:2")
SendKeys "^a"
Application.Wait Now + TimeValue("00:00:2")
SendKeys "^c"
Application.Wait Now + TimeValue("00:00:1")

AppActivate ActiveWorkbook.Windows(1).Caption
objPDF.GetFromClipboard
textPDF = objPDF.GetText(1)
MsgBox textPDF

If you're interested see my project in github.

Copying and pasting by user interactions emulation could be not reliable (for example, popup appears and it switches the focus). You may be interested in trying the commercial ByteScout PDF Extractor SDK that is specifically designed to extract data from PDF and it works from VBA. It is also capable of extracting data from invoices and tables as CSV using VB code.

Here is the VBA code for Excel to extract text from given locations and save them into cells in the Sheet1:

Private Sub CommandButton1_Click()

' Create TextExtractor object
' Set extractor = CreateObject("Bytescout.PDFExtractor.TextExtractor")
Dim extractor As New Bytescout_PDFExtractor.TextExtractor

extractor.RegistrationName = "demo"
extractor.RegistrationKey = "demo"

' Load sample PDF document
extractor.LoadDocumentFromFile ("c:\sample1.pdf")

' Get page count
pageCount = extractor.GetPageCount()

Dim wb As Workbook
Dim ws As Worksheet
Dim TxtRng As Range

Set wb = ActiveWorkbook
Set ws = wb.Sheets("Sheet1")

For i = 0 To pageCount - 1
 RectLeft = 10
 RectTop = 10
 RectWidth = 100
 RectHeight = 100

 ' check the same text is extracted from returned coordinates
 extractor.SetExtractionArea RectLeft, RectTop, RectWidth, RectHeight
 ' extract text from given area
 extractedText = extractor.GetTextFromPage(i)

 ' insert rows
 ' Rows(1).Insert shift:=xlShiftDown
 ' write cell value
 Set TxtRng = ws.Range("A" & CStr(i + 2))
 TxtRng.Value = extractedText

Next

Set extractor = Nothing

End Sub

Disclosure: I am related to ByteScout

I know this is an old issue but I just had to do this for a project at work, and I am very surprised that nobody has thought of this solution yet:
Just open the .pdf with Microsoft word.

The code is a lot easier to work with when you are trying to extract data from a .docx because it opens in Microsoft Word. Excel and Word play well together because they are both Microsoft programs. In my case, the file of question had to be a .pdf file. Here's the solution I came up with:

	Choose the default program to open .pdf files to be Microsoft Word
	The first time you open a .pdf file with word, a dialogue box pops up claiming word will need to convert the .pdf into a .docx file. Click the check box in the bottom left stating "do not show this message again" and then click OK.
	Create a macro that extracts data from a .docx file. I used MikeD's Code as a resource for this.
	Tinker around with the MoveDown, MoveRight, and Find.Execute methods to fit the need of your task.

Yes you could just convert the .pdf file to a .docx file but this is a much simpler solution in my opinion.

Using Bytescout PDF Extractor SDK is a good option. It is cheap and gives plenty of PDF related functionality. One of the answers above points to the dead page Bytescout on GitHub. I am providing a relevant working sample to extract table from PDF. You may use it to export in any format.

Set extractor = CreateObject("Bytescout.PDFExtractor.StructuredExtractor")

extractor.RegistrationName = "demo"
extractor.RegistrationKey = "demo"

' Load sample PDF document
extractor.LoadDocumentFromFile "../../sample3.pdf"

For ipage = 0 To extractor.GetPageCount() - 1

 ' starting extraction from page #"
 extractor.PrepareStructure ipage

 rowCount = extractor.GetRowCount(ipage)

 For row = 0 To rowCount - 1
 columnCount = extractor.GetColumnCount(ipage, row)

 For col = 0 To columnCount-1
 WScript.Echo "Cell at page #" +CStr(ipage) + ", row=" & CStr(row) & ", column=" & _
 CStr(col) & vbCRLF & extractor.GetCellValue(ipage, row, col)
 Next
 Next
Next

Many more samples available here: https://github.com/bytescout/pdf-extractor-sdk-samples

Over time, I have found that extracting text from PDFs in a structured format is tough business. However if you are looking for an easy solution, you might want to consider XPDF tool pdftotext.

Pseudocode to extract the text would include:

	Using SHELL VBA statement to extract the text from PDF to a temporary file using XPDF
	Using sequential file read statements to read the temporary file contents into a string
	Pasting the string into Excel

Simplified example below:

 Sub ReadIntoExcel(PDFName As String)
 'Convert PDF to text
 Shell "C:\Utils\pdftotext.exe -layout " & PDFName & " tempfile.txt"

 'Read in the text file and write to Excel
 Dim TextLine as String
 Dim RowNumber as Integer
 Dim F1 as Integer
 RowNumber = 1
 F1 = Freefile()
 Open "tempfile.txt" for Input as #F1
 While Not EOF(#F1)
 Line Input #F1, TextLine
 ThisWorkbook.WorkSheets(1).Cells(RowNumber, 1).Value = TextLine
 RowNumber = RowNumber + 1
 Wend
 Close #F1
 End Sub

Source: Stackoverflow.com

Examples related to excel

• Python: Pandas pd.read_excel giving ImportError: Install xlrd >= 0.9.0 for Excel support
• Converting unix time into date-time via excel
• How to increment a letter N times per iteration and store in an array?
• 'Microsoft.ACE.OLEDB.16.0' provider is not registered on the local machine. (System.Data)
• How to import an Excel file into SQL Server?
• Copy filtered data to another sheet using VBA
• Better way to find last used row
• Could pandas use column as index?
• Check if a value is in an array or not with Excel VBA
• How to sort dates from Oldest to Newest in Excel?
Examples related to vba

• Copy filtered data to another sheet using VBA
• Better way to find last used row
• Check if a value is in an array or not with Excel VBA
• Creating an Array from a Range in VBA
• Excel: macro to export worksheet as CSV file without leaving my current Excel sheet
• VBA: Convert Text to Number
• What's the difference between "end" and "exit sub" in VBA?
• Rename Excel Sheet with VBA Macro
• Extract Data from PDF and Add to Worksheet
• Quicker way to get all unique values of a column in VBA?
Examples related to pdf

• ImageMagick security policy 'PDF' blocking conversion
• How to extract table as text from the PDF using Python?
• Extract a page from a pdf as a jpeg
• How can I read pdf in python?
• Generating a PDF file from React Components
• Extract Data from PDF and Add to Worksheet
• How to extract text from a PDF file?
• How to download PDF automatically using js?
• Download pdf file using jquery ajax
• Generate PDF from HTML using pdfMake in Angularjs

Tags

Photobucket
Multithreading
Ssh
User-input
Druby
Pyglet
Signature
Tostring
S2k
Coda-slider
Open-source
Inorder
Django-settings
Jca
Hacker-news
Axshockwaveflash
Sourcegear-fortress
Netui
Dbx
Bnf
Launchpad
Putty
Gridbaglayout
Command-window
Program-flow
Minitest
Preview-5
Flicker
Backbone.js
Spweb
Kdtree
Fgetc
Ide-customization
Ioerror
Dmo
Claims
Jquery-load
Lazy-registration
Member-hiding
Qt-designer
Ajax.net
Reflectionpermission
Mixed-mode
Word-template
Protein-database
Controlcollection
Module-pattern
Dyndns
Forms-authentication
Yui-autocomplete
External-tools
Code-signing-certificate
Modx-evolution
Quirks-mode
Thread-synchronization
Decal
Corrupt-data
Server-response
Gate
Openoffice-base
Orthogonal
Autogeneratecolumn
Scimore
Memory-editing
Itemrenderer
.net-cf-3.5
Windows-screensaver
Multicore
Axum
Hgweb.cgi
Ora-01722
Fbo
Unzip
Pscp
Smarthost
Socketserver
Codepages
Qlistview
Sharepointfoundation2010
X264
Customising
High-speed-computing
Numeric-keypad
Ucp
Conditional-compilation
Gunit
Py-appscript
Magic-mouse
Apartments
Webserver
Jaws-wordnet
Dom4j
State-management
Tivoli
Ftell
Subrepos
Ushort
Prefix
Bouncycastle
Data-persistence

JavaScript |
Python |
NodeJS |
HTML |
Java |
MongoDB |
Ruby |
Oracle |
CSS |
Android |
SQL Server

user contributions licensed under cc by-sa 3.0

SyntaxFix |
Privacy Policy |
Contact Us

