I would also like to add a solution that uses slots:
class Point:
__slots__ = ["x", "y"]
def __init__(self, x, y):
self.x = x
self.y = y
Definitely check the documentation for slots but a quick explanation of slots is that it is python's way of saying: "If you can lock these attributes and only these attributes into the class such that you commit that you will not add any new attributes once the class is instantiated (yes you can add new attributes to a class instance, see example below) then I will do away with the large memory allocation that allows for adding new attributes to a class instance and use just what I need for these slotted attributes".
Example of adding attributes to class instance (thus not using slots):
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
p1 = Point(3,5)
p1.z = 8
print(p1.z)
Output: 8
Example of trying to add attributes to class instance where slots was used:
class Point:
__slots__ = ["x", "y"]
def __init__(self, x, y):
self.x = x
self.y = y
p1 = Point(3,5)
p1.z = 8
Output: AttributeError: 'Point' object has no attribute 'z'
This can effectively works as a struct and uses less memory than a class (like a struct would, although I have not researched exactly how much). It is recommended to use slots if you will be creating a large amount of instances of the object and do not need to add attributes. A point object is a good example of this as it is likely that one may instantiate many points to describe a dataset.