[c++] How can I add reflection to a C++ application?

I'd like to be able to introspect a C++ class for its name, contents (i.e. members and their types) etc. I'm talking native C++ here, not managed C++, which has reflection. I realise C++ supplies some limited information using RTTI. Which additional libraries (or other techniques) could supply this information?

This question is related to c++ reflection templates sfinae

The answer is


EDIT: Updated broken link as of February, the 7th, 2017.

I think noone mentioned this:

At CERN they use a full reflection system for C++:

CERN Reflex. It seems to work very well.


You can find another library here: http://www.garret.ru/cppreflection/docs/reflect.html It supports 2 ways: getting type information from debug information and let programmer to provide this information.

I also interested in reflection for my project and found this library, i have not tried it yet, but tried other tools from this guy and i like how they work :-)


Check out Classdesc http://classdesc.sf.net. It provides reflection in the form of class "descriptors", works with any standard C++ compiler (yes it is known to work with Visual Studio as well as GCC), and does not require source code annotation (although some pragmas exist to handle tricky situations). It has been in development for more than a decade, and used in a number of industrial scale projects.


EDIT: CAMP is no more maintained ; two forks are available:

  • One is also called CAMP too, and is based on the same API.
  • Ponder is a partial rewrite, and shall be preferred as it does not requires Boost ; it's using C++11.

CAMP is an MIT licensed library (formerly LGPL) that adds reflection to the C++ language. It doesn't require a specific preprocessing step in the compilation, but the binding has to be made manually.

The current Tegesoft library uses Boost, but there is also a fork using C++11 that no longer requires Boost.


This question is a bit old now (don't know why I keep hitting old questions today) but I was thinking about BOOST_FUSION_ADAPT_STRUCT which introduces compile-time reflection.

It is up to you to map this to run-time reflection of course, and it won't be too easy, but it is possible in this direction, while it would not be in the reverse :)

I really think a macro to encapsulate the BOOST_FUSION_ADAPT_STRUCT one could generate the necessary methods to get the runtime behavior.


And I would love a pony, but ponies aren't free. :-p

http://en.wikibooks.org/wiki/C%2B%2B_Programming/RTTI is what you're going to get. Reflection like you're thinking about -- fully descriptive metadata available at runtime -- just doesn't exist for C++ by default.


What are you trying to do with reflection?
You can use the Boost type traits and typeof libraries as a limited form of compile-time reflection. That is, you can inspect and modify the basic properties of a type passed to a template.


You can achieve cool static reflection features for structs with BOOST_HANA_DEFINE_STRUCT from the Boost::Hana library.
Hana is quite versatile, not only for the usecase you have in mind but for a lot of template metaprogramming.


It looks like C++ still does not have this feature. And C++11 postponed reflection too ((

Search some macros or make own. Qt also can help with reflection (if it can be used).


There is another new library for reflection in C++, called RTTR (Run Time Type Reflection, see also github).

The interface is similar to reflection in C# and it works without any RTTI.


When I wanted reflection in C++ I read this article and improved upon what I saw there. Sorry, no can has. I don't own the result...but you can certainly get what I had and go from there.

I am currently researching, when I feel like it, methods to use inherit_linearly to make the definition of reflectable types much easier. I've gotten fairly far in it actually but I still have a ways to go. The changes in C++0x are very likely to be a lot of help in this area.


The information does exist - but not in the format you need, and only if you export your classes. This works in Windows, I don't know about other platforms. Using the storage-class specifiers as in, for example:

class __declspec(export) MyClass
{
public:
    void Foo(float x);
}

This makes the compiler build the class definition data into the DLL/Exe. But it's not in a format that you can readily use for reflection.

At my company we built a library that interprets this metadata, and allows you to reflect a class without inserting extra macros etc. into the class itself. It allows functions to be called as follows:

MyClass *instance_ptr=new MyClass;
GetClass("MyClass")->GetFunction("Foo")->Invoke(instance_ptr,1.331);

This effectively does:

instance_ptr->Foo(1.331);

The Invoke(this_pointer,...) function has variable arguments. Obviously by calling a function in this way you're circumventing things like const-safety and so on, so these aspects are implemented as runtime checks.

I'm sure the syntax could be improved, and it only works on Win32 and Win64 so far. We've found it really useful for having automatic GUI interfaces to classes, creating properties in C++, streaming to and from XML and so on, and there's no need to derive from a specific base class. If there's enough demand maybe we could knock it into shape for release.


Reflection in C++ is very useful, in cases there you need to run some method for each member(For example: serialization, hashing, compare). I came with generic solution, with very simple syntax:

struct S1
{
    ENUMERATE_MEMBERS(str,i);
    std::string str;
    int i;
};
struct S2
{
    ENUMERATE_MEMBERS(s1,i2);
    S1 s1;
    int i2;
};

Where ENUMERATE_MEMBERS is a macro, which is described later(UPDATE):

Assume we have defined serialization function for int and std::string like this:

void EnumerateWith(BinaryWriter & writer, int val)
{
    //store integer
    writer.WriteBuffer(&val, sizeof(int));
}
void EnumerateWith(BinaryWriter & writer, std::string val)
{
    //store string
    writer.WriteBuffer(val.c_str(), val.size());
}

And we have generic function near the "secret macro" ;)

template<typename TWriter, typename T>
auto EnumerateWith(TWriter && writer, T && val) -> is_enumerable_t<T>
{
    val.EnumerateWith(write); //method generated by ENUMERATE_MEMBERS macro
}

Now you can write

S1 s1;
S2 s2;
//....
BinaryWriter writer("serialized.bin");

EnumerateWith(writer, s1); //this will call EnumerateWith for all members of S1
EnumerateWith(writer, s2); //this will call EnumerateWith for all members of S2 and S2::s1 (recursively)

So having ENUMERATE_MEMBERS macro in struct definition, you can build serialization, compare, hashing, and other stuffs without touching original type, the only requirement is to implement "EnumerateWith" method for each type, which is not enumerable, per enumerator(like BinaryWriter). Usually you will have to implement 10-20 "simple" types to support any type in your project.

This macro should have zero-overhead to struct creation/destruction in run-time, and the code of T.EnumerateWith() should be generated on-demand, which can be achieved by making it template-inline function, so the only overhead in all the story is to add ENUMERATE_MEMBERS(m1,m2,m3...) to each struct, while implementing specific method per member type is a must in any solution, so I do not assume it as overhead.

UPDATE: There is very simple implementation of ENUMERATE_MEMBERS macro(however it could be a little be extended to support inheritance from enumerable struct)

#define ENUMERATE_MEMBERS(...) \
template<typename TEnumerator> inline void EnumerateWith(TEnumerator & enumerator) const { EnumerateWithHelper(enumerator, __VA_ARGS__ ); }\
template<typename TEnumerator> inline void EnumerateWith(TEnumerator & enumerator) { EnumerateWithHelper(enumerator, __VA_ARGS__); }

// EnumerateWithHelper
template<typename TEnumerator, typename ...T> inline void EnumerateWithHelper(TEnumerator & enumerator, T &...v) 
{ 
    int x[] = { (EnumerateWith(enumerator, v), 1)... }; 
}

// Generic EnumerateWith
template<typename TEnumerator, typename T>
auto EnumerateWith(TEnumerator & enumerator, T & val) -> std::void_t<decltype(val.EnumerateWith(enumerator))>
{
    val.EnumerateWith(enumerator);
}

And you do not need any 3rd party library for these 15 lines of code ;)


The RareCpp library makes for fairly easy and intuitive reflection - all field/type information is designed to either be available in arrays or to feel like array access. It's written for C++17 and works with Visual Studios, g++, and Clang. The library is header only, meaning you need only copy "Reflect.h" into your project to use it.

Reflected structs or classes need the REFLECT macro, where you supply the name of the class you're reflecting and the names of the fields.

class FuelTank {
    public:
        float capacity;
        float currentLevel;
        float tickMarks[2];

    REFLECT(FuelTank, capacity, currentLevel, tickMarks)
};

That's all there is, no additional code is needed to setup reflection. Optionally you can supply superclasses (in the parenthesis of the first argument) and field annotations (in the parenthesis preceeding the field you want to annotate) to be able to traverse superclasses or add additional compile-time information to a field (such as Json::Ignore).

Looping through fields can be as simple as...

for ( size_t i=0; i<FuelTank::Class::TotalFields; i++ )
    std::cout << FuelTank::Class::Fields[i].name << std::endl;

You can loop through an object instance to access field values (which you can read or modify) and field type information...

FuelTank::Class::ForEachField(fuelTank, [&](auto & field, auto & value) {
    using Type = typename std::remove_reference<decltype(value)>::type;
    std::cout << TypeToStr<Type>() << " " << field.name << ": " << value << std::endl;
});

A JSON Library is built on top of RandomAccessReflection which auto identifies appropriate JSON output representations for reading or writing, and can recursively traverse any reflected fields, as well as arrays and STL containers.

struct MyOtherObject { int myOtherInt; REFLECT(MyOtherObject, myOtherInt) };
struct MyObject
{
    int myInt;
    std::string myString;
    MyOtherObject myOtherObject;
    std::vector<int> myIntCollection;

    REFLECT(MyObject, myInt, myString, myOtherObject, myIntCollection)
};

int main()
{
    MyObject myObject = {};
    std::cout << "Enter MyObject:" << std::endl;
    std::cin >> Json::in(myObject);
    std::cout << std::endl << std::endl << "You entered:" << std::endl;
    std::cout << Json::pretty(myObject);
}

The above could be ran like so...

Enter MyObject:
{
  "myInt": 1337, "myString": "stringy", "myIntCollection": [2,4,6],
  "myOtherObject": {
    "myOtherInt": 9001
  }
}


You entered:
{
  "myInt": 1337,
  "myString": "stringy",
  "myOtherObject": {
    "myOtherInt": 9001
  },
  "myIntCollection": [ 2, 4, 6 ]
}

See also...


I think you might find interesting the article "Using Templates for Reflection in C++" by Dominic Filion. It is in section 1.4 of Game Programming Gems 5. Unfortunately I dont have my copy with me, but look for it because I think it explains what you are asking for.


The two reflection-like solutions I know of from my C++ days are:

1) Use RTTI, which will provide a bootstrap for you to build your reflection-like behaviour, if you are able to get all your classes to derive from an 'object' base class. That class could provide some methods like GetMethod, GetBaseClass etc. As for how those methods work you will need to manually add some macros to decorate your types, which behind the scenes create metadata in the type to provide answers to GetMethods etc.

2) Another option, if you have access to the compiler objects is to use the DIA SDK. If I remember correctly this lets you open pdbs, which should contain metadata for your C++ types. It might be enough to do what you need. This page shows how you can get all base types of a class for example.

Both these solution are a bit ugly though! There is nothing like a bit of C++ to make you appreciate the luxuries of C#.

Good Luck.


If you're looking for relatively simple C++ reflection - I have collected from various sources macro / defines, and commented them out how they works. You can download header files from here:

https://github.com/tapika/TestCppReflect/blob/master/MacroHelpers.h

set of defines, plus functionality on top of it:

https://github.com/tapika/TestCppReflect/blob/master/CppReflect.h https://github.com/tapika/TestCppReflect/blob/master/CppReflect.cpp https://github.com/tapika/TestCppReflect/blob/master/TypeTraits.h

Sample application resides in git repository as well, in here: https://github.com/tapika/TestCppReflect/

I'll partly copy it here with explanation:

#include "CppReflect.h"
using namespace std;


class Person
{
public:

    // Repack your code into REFLECTABLE macro, in (<C++ Type>) <Field name>
    // form , like this:

    REFLECTABLE( Person,
        (CString)   name,
        (int)       age,
...
    )
};

void main(void)
{
    Person p;
    p.name = L"Roger";
    p.age = 37;
...

    // And here you can convert your class contents into xml form:

    CStringW xml = ToXML( &p );
    CStringW errors;

    People ppl2;

    // And here you convert from xml back to class:

    FromXml( &ppl2, xml, errors );
    CStringA xml2 = ToXML( &ppl2 );
    printf( xml2 );

}

REFLECTABLE define uses class name + field name with offsetof - to identify at which place in memory particular field is located. I have tried to pick up .NET terminology for as far as possible, but C++ and C# are different, so it's not 1 to 1. Whole C++ reflection model resides in TypeInfo and FieldInfo classes.

I have used pugi xml parser to fetch demo code into xml and restore it back from xml.

So output produced by demo code looks like this:

<?xml version="1.0" encoding="utf-8"?>
<People groupName="Group1">
    <people>
        <Person name="Roger" age="37" />
        <Person name="Alice" age="27" />
        <Person name="Cindy" age="17" />
    </people>
</People>

It's also possible to enable any 3-rd party class / structure support via TypeTraits class, and partial template specification - to define your own TypeTraitsT class, in similar manner to CString or int - see example code in

https://github.com/tapika/TestCppReflect/blob/master/TypeTraits.h#L195

This solution is applicable for Windows / Visual studio. It's possible to port it to other OS/compilers, but haven't done that one. (Ask me if you really like solution, I might be able to help you out)

This solution is applicable for one shot serialization of one class with multiple subclasses.

If you however are searching for mechanism to serialize class parts or even to control what functionality reflection calls produce, you could take a look on following solution:

https://github.com/tapika/cppscriptcore/tree/master/SolutionProjectModel

More detailed information can be found from youtube video:

C++ Runtime Type Reflection https://youtu.be/TN8tJijkeFE

I'm trying to explain bit deeper on how c++ reflection will work.

Sample code will look like for example this:

https://github.com/tapika/cppscriptcore/blob/master/SolutionProjectModel/testCppApp.cpp

c.General.IntDir = LR"(obj\$(ProjectName)_$(Configuration)_$(Platform)\)";
c.General.OutDir = LR"(bin\$(Configuration)_$(Platform)\)";
c.General.UseDebugLibraries = true;
c.General.LinkIncremental = true;
c.CCpp.Optimization = optimization_Disabled;
c.Linker.System.SubSystem = subsystem_Console;
c.Linker.Debugging.GenerateDebugInformation = debuginfo_true;

But each step here actually results in function call Using C++ properties with __declspec(property(get =, put ... ).

which receives full information on C++ Data Types, C++ property names and class instance pointers, in form of path, and based on that information you can generate xml, json or even serialize that one over internet.

Examples of such virtual callback functions can be found here:

https://github.com/tapika/cppscriptcore/blob/master/SolutionProjectModel/VCConfiguration.cpp

See functions ReflectCopy, and virtual function ::OnAfterSetProperty.

But since topic is really advanced - I recommend to check through video first.

If you have some improvement ideas, feel free to contact me.


If you declare a pointer to a function like this:

int (*func)(int a, int b);

You can assign a place in memory to that function like this (requires libdl and dlopen)

#include <dlfcn.h>

int main(void)
{
    void *handle;
    char *func_name = "bla_bla_bla";
    handle = dlopen("foo.so", RTLD_LAZY);
    *(void **)(&func) = dlsym(handle, func_name);
    return func(1,2);
}

To load a local symbol using indirection, you can use dlopen on the calling binary (argv[0]).

The only requirement for this (other than dlopen(), libdl, and dlfcn.h) is knowing the arguments and type of the function.


There are two kinds of reflection swimming around.

  1. Inspection by iterating over members of a type, enumerating its methods and so on.

    This is not possible with C++.
  2. Inspection by checking whether a class-type (class, struct, union) has a method or nested type, is derived from another particular type.

    This kind of thing is possible with C++ using template-tricks. Use boost::type_traits for many things (like checking whether a type is integral). For checking for the existance of a member function, use Is it possible to write a template to check for a function's existence? . For checking whether a certain nested type exists, use plain SFINAE .

If you are rather looking for ways to accomplish 1), like looking how many methods a class has, or like getting the string representation of a class id, then i'm afraid there is no Standard C++ way of doing this. You have to use either

  • A Meta Compiler like the Qt Meta Object Compiler which translates your code adding additional meta informations.
  • A Framework constisting of macros that allow you to add the required meta-informations. You would need to tell the framework all methods, the class-names, base-classes and everything it needs.

C++ is made with speed in mind. If you want high-level inspection, like C# or Java has, then I'm afraid i have to tell you there is no way without some effort.


I would recommend using Qt.

There is an open-source licence as well as a commercial licence.


I did something like what you're after once, and while it's possible to get some level of reflection and access to higher-level features, the maintenance headache might not be worth it. My system was used to keep the UI classes completely separated from the business logic through delegation akin to Objective-C's concept of message passing and forwarding. The way to do it is to create some base class that is capable of mapping symbols (I used a string pool but you could do it with enums if you prefer speed and compile-time error handling over total flexibility) to function pointers (actually not pure function pointers, but something similar to what Boost has with Boost.Function--which I didn't have access to at the time). You can do the same thing for your member variables as long as you have some common base class capable of representing any value. The entire system was an unabashed ripoff of Key-Value Coding and Delegation, with a few side effects that were perhaps worth the sheer amount of time necessary to get every class that used the system to match all of its methods and members up with legal calls: 1) Any class could call any method on any other class without having to include headers or write fake base classes so the interface could be predefined for the compiler; and 2) The getters and setters of the member variables were easy to make thread-safe because changing or accessing their values was always done through 2 methods in the base class of all objects.

It also led to the possibility of doing some really weird things that otherwise aren't easy in C++. For example I could create an Array object that contained arbitrary items of any type, including itself, and create new arrays dynamically by passing a message to all array items and collecting the return values (similar to map in Lisp). Another was the implementation of key-value observing, whereby I was able to set up the UI to respond immediately to changes in the members of backend classes instead of constantly polling the data or unnecessarily redrawing the display.

Maybe more interesting to you is the fact that you can also dump all methods and members defined for a class, and in string form no less.

Downsides to the system that might discourage you from bothering: adding all of the messages and key-values is extremely tedious; it's slower than without any reflection; you'll grow to hate seeing boost::static_pointer_cast and boost::dynamic_pointer_cast all over your codebase with a violent passion; the limitations of the strongly-typed system are still there, you're really just hiding them a bit so it isn't as obvious. Typos in your strings are also not a fun or easy to discover surprise.

As to how to implement something like this: just use shared and weak pointers to some common base (mine was very imaginatively called "Object") and derive for all the types you want to use. I'd recommend installing Boost.Function instead of doing it the way I did, which was with some custom crap and a ton of ugly macros to wrap the function pointer calls. Since everything is mapped, inspecting objects is just a matter of iterating through all of the keys. Since my classes were essentially as close to a direct ripoff of Cocoa as possible using only C++, if you want something like that then I'd suggest using the Cocoa documentation as a blueprint.


You need to look at what you are trying to do, and if RTTI will satisfy your requirements. I've implemented my own pseudo-reflection for some very specific purposes. For example, I once wanted to be able to flexibly configure what a simulation would output. It required adding some boilerplate code to the classes that would be output:

namespace {
  static bool b2 = Filter::Filterable<const MyObj>::Register("MyObject");
} 

bool MyObj::BuildMap()
{
  Filterable<const OutputDisease>::AddAccess("time", &MyObj::time);
  Filterable<const OutputDisease>::AddAccess("person", &MyObj::id);
  return true;
}

The first call adds this object to the filtering system, which calls the BuildMap() method to figure out what methods are available.

Then, in the config file, you can do something like this:

FILTER-OUTPUT-OBJECT   MyObject
FILTER-OUTPUT-FILENAME file.txt
FILTER-CLAUSE-1        person == 1773
FILTER-CLAUSE-2        time > 2000

Through some template magic involving boost, this gets translated into a series of method calls at run-time (when the config file is read), so it's fairly efficient. I wouldn't recommend doing this unless you really need to, but, when you do, you can do some really cool stuff.


Reflection is essentially about what the compiler decided to leave as footprints in the code that the runtime code can query. C++ is famous for not paying for what you don't use; because most people don't use/want reflection, the C++ compiler avoids the cost by not recording anything.

So, C++ doesn't provide reflection, and it isn't easy to "simulate" it yourself as general rule as other answers have noted.

Under "other techniques", if you don't have a language with reflection, get a tool that can extract the information you want at compile time.

Our DMS Software Reengineering Toolkit is generalized compiler technology parameterized by explicit langauge definitions. It has langauge definitions for C, C++, Java, COBOL, PHP, ...

For C, C++, Java and COBOL versions, it provides complete access to parse trees, and symbol table information. That symbol table information includes the kind of data you are likely to want from "reflection". If you goal is to enumerate some set of fields or methods and do something with them, DMS can be used to transform the code according to what you find in the symbol tables in arbitrary ways.


I would like to advertise the existence of the automatic introspection/reflection toolkit "IDK". It uses a meta-compiler like Qt's and adds meta information directly into object files. It is claimed to be easy to use. No external dependencies. It even allows you to automatically reflect std::string and then use it in scripts. Please look at IDK


Reflection is not supported by C++ out of the box. This is sad because it makes defensive testing a pain.

There are several approaches to doing reflection:

  1. use the debug information (non portable).
  2. Sprinkle your code with macro's/templates or some other source approach (looks ugly)
  3. Modify a compiler such as clang/gcc to produce a database.
  4. Use Qt moc approach
  5. Boost Reflect
  6. Precise and Flat Reflection

The first link looks the most promising (uses mod's to clang), the second discusses a number of techniques, the third is a different approach using gcc:

  1. http://www.donw.org/rfl/

  2. https://bitbucket.org/dwilliamson/clreflect

  3. https://root.cern.ch/how/how-use-reflex

There is now a working group for C++ reflection. See the news for C++14 @ CERN:

Edit 13/08/17:

Since the original post there have been a number of potential advancements on the reflection. The following provides more detail and a discussion on the various techniques and status:

  1. Static Reflection in a Nutshell
  2. Static Reflection
  3. A design for static reflection

However it does not look promising on a standardised reflections approach in C++ in the near future unless there is a lot more interest from the community in support for reflection in C++.

The following details the current status based on feedback from the last C++ standards meeting:

Edit 13/12/2017

Reflection looks to be moving towards C++ 20 or more probably a TSR. Movement is however slow.

Edit 15/09/2018

A draft TS has been sent out to the national bodies for ballot.

The text can be found here: https://github.com/cplusplus/reflection-ts

Edit 11/07/2019

The reflection TS is feature complete and is out for comment and vote over the summer (2019).

The meta-template programing approach is to be replaced with a simplier compile time code approach (not reflected in the TS).

Edit 10/02/2020

There is a request to support the reflection TS in Visual Studio here:

Talk on the TS by the author David Sankel:

Edit 17 March 2020

Progress on reflection is being made. A report from '2020-02 Prague ISO C++ Committee Trip Report' can be found here:

Details on what is being considered for C++23 can be found here (includes short section on Reflection):

Edit 4th June 2020

A new framework has been released by Jeff Preshing called 'Plywood' that contains a mechanism for runtime reflection. More details can be found here:

The tools and approach look to be the most polished and easiest to use so far.

Edit July 12 2020

Clang experimental reflection fork : https://github.com/lock3/meta/wiki

Interesting reflection library that uses clang tooling library to extract information for simple reflection with no need to add macro's: https://github.com/chakaz/reflang

Edit Feb 24 2021

Some additional clang tooling approaches:


even though reflection is not supported out-of-the-box in c++, it is not too hard to implement. I've encountered this great article: http://replicaisland.blogspot.co.il/2010/11/building-reflective-object-system-in-c.html

the article explains in great detail how you can implement a pretty simple and rudimentary reflection system. granted its not the most wholesome solution, and there are rough edges left to be sorted out but for my needs it was sufficient.

the bottom line - reflection can pay off if done correctly, and it is completely feasible in c++.


What you need to do is have the preprocessor generate reflection data about the fields. This data can be stored as nested classes.

First, to make it easier and cleaner to write it in the preprocessor we will use typed expression. A typed expression is just an expression that puts the type in parenthesis. So instead of writing int x you will write (int) x. Here are some handy macros to help with typed expressions:

#define REM(...) __VA_ARGS__
#define EAT(...)

// Retrieve the type
#define TYPEOF(x) DETAIL_TYPEOF(DETAIL_TYPEOF_PROBE x,)
#define DETAIL_TYPEOF(...) DETAIL_TYPEOF_HEAD(__VA_ARGS__)
#define DETAIL_TYPEOF_HEAD(x, ...) REM x
#define DETAIL_TYPEOF_PROBE(...) (__VA_ARGS__),
// Strip off the type
#define STRIP(x) EAT x
// Show the type without parenthesis
#define PAIR(x) REM x

Next, we define a REFLECTABLE macro to generate the data about each field(plus the field itself). This macro will be called like this:

REFLECTABLE
(
    (const char *) name,
    (int) age
)

So using Boost.PP we iterate over each argument and generate the data like this:

// A helper metafunction for adding const to a type
template<class M, class T>
struct make_const
{
    typedef T type;
};

template<class M, class T>
struct make_const<const M, T>
{
    typedef typename boost::add_const<T>::type type;
};


#define REFLECTABLE(...) \
static const int fields_n = BOOST_PP_VARIADIC_SIZE(__VA_ARGS__); \
friend struct reflector; \
template<int N, class Self> \
struct field_data {}; \
BOOST_PP_SEQ_FOR_EACH_I(REFLECT_EACH, data, BOOST_PP_VARIADIC_TO_SEQ(__VA_ARGS__))

#define REFLECT_EACH(r, data, i, x) \
PAIR(x); \
template<class Self> \
struct field_data<i, Self> \
{ \
    Self & self; \
    field_data(Self & self) : self(self) {} \
    \
    typename make_const<Self, TYPEOF(x)>::type & get() \
    { \
        return self.STRIP(x); \
    }\
    typename boost::add_const<TYPEOF(x)>::type & get() const \
    { \
        return self.STRIP(x); \
    }\
    const char * name() const \
    {\
        return BOOST_PP_STRINGIZE(STRIP(x)); \
    } \
}; \

What this does is generate a constant fields_n that is number of reflectable fields in the class. Then it specializes the field_data for each field. It also friends the reflector class, this is so it can access the fields even when they are private:

struct reflector
{
    //Get field_data at index N
    template<int N, class T>
    static typename T::template field_data<N, T> get_field_data(T& x)
    {
        return typename T::template field_data<N, T>(x);
    }

    // Get the number of fields
    template<class T>
    struct fields
    {
        static const int n = T::fields_n;
    };
};

Now to iterate over the fields we use the visitor pattern. We create an MPL range from 0 to the number of fields, and access the field data at that index. Then it passes the field data on to the user-provided visitor:

struct field_visitor
{
    template<class C, class Visitor, class I>
    void operator()(C& c, Visitor v, I)
    {
        v(reflector::get_field_data<I::value>(c));
    }
};


template<class C, class Visitor>
void visit_each(C & c, Visitor v)
{
    typedef boost::mpl::range_c<int,0,reflector::fields<C>::n> range;
    boost::mpl::for_each<range>(boost::bind<void>(field_visitor(), boost::ref(c), v, _1));
}

Now for the moment of truth we put it all together. Here is how we can define a Person class that is reflectable:

struct Person
{
    Person(const char *name, int age)
        :
        name(name),
        age(age)
    {
    }
private:
    REFLECTABLE
    (
        (const char *) name,
        (int) age
    )
};

Here is a generalized print_fields function using the reflection data to iterate over the fields:

struct print_visitor
{
    template<class FieldData>
    void operator()(FieldData f)
    {
        std::cout << f.name() << "=" << f.get() << std::endl;
    }
};

template<class T>
void print_fields(T & x)
{
    visit_each(x, print_visitor());
}

An example of using the print_fields with the reflectable Person class:

int main()
{
    Person p("Tom", 82);
    print_fields(p);
    return 0;
}

Which outputs:

name=Tom
age=82

And voila, we have just implemented reflection in C++, in under 100 lines of code.


Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to reflection

Get properties of a class Get class name of object as string in Swift Set field value with reflection Using isKindOfClass with Swift I want to get the type of a variable at runtime Loading DLLs at runtime in C# How to have Java method return generic list of any type? Java reflection: how to get field value from an object, not knowing its class Dynamically Add C# Properties at Runtime Check if a property exists in a class

Examples related to templates

*ngIf else if in template 'if' statement in jinja2 template How to create a link to another PHP page Flask raises TemplateNotFound error even though template file exists Application not picking up .css file (flask/python) Django: How can I call a view function from template? Angularjs Template Default Value if Binding Null / Undefined (With Filter) HTML email in outlook table width issue - content is wider than the specified table width How to redirect on another page and pass parameter in url from table? How to check for the type of a template parameter?

Examples related to sfinae

Templated check for the existence of a class member function? How can I add reflection to a C++ application?