The basic issue is concurrency. There is more than one flow of control. Think about two processes using a shared memory. Now only one process can access the shared memory at a time. If more than one process accesses the shared memory at a time, the contents of shared memory would get corrupted. It is like a railroad track. Only one train can run on it, else there would be an accident.So there is a signalling mechanism, which a driver checks. If the signal is green, the train can go and if it is red it has to wait to use the track. Similarly in case of shared memory, there is a binary semaphore. If the semaphore is 1, a process acquires it (makes it 0) and goes ahead and accesses it. If the semaphore is 0, the process waits. The functionality the binary semaphore has to provide is mutual exclusion (or mutex, in short) so that only one of the many concurrent entities (process or thread) mutually excludes others. It is a plus that we have counting semaphores, which help in synchronizing multiple instances of a resource.
Mutual exclusion is the basic functionality provided by semaphores. Now in the context of threads, we might have a different name and syntax for it. But the underlying concept is the same: how to keep integrity of code and data in concurrent programming. In my opinion, things like ownership, and associated checks are refinements provided by implementations.