[python] Python's time.clock() vs. time.time() accuracy?

Which is better to use for timing in Python? time.clock() or time.time()? Which one provides more accuracy?

for example:

start = time.clock()
... do something
elapsed = (time.clock() - start)

vs.

start = time.time()
... do something
elapsed = (time.time() - start)

This question is related to python time

The answer is


As of 3.3, time.clock() is deprecated, and it's suggested to use time.process_time() or time.perf_counter() instead.

Previously in 2.7, according to the time module docs:

time.clock()

On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically better than one microsecond.

Additionally, there is the timeit module for benchmarking code snippets.


As of 3.3, time.clock() is deprecated, and it's suggested to use time.process_time() or time.perf_counter() instead.

Previously in 2.7, according to the time module docs:

time.clock()

On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically better than one microsecond.

Additionally, there is the timeit module for benchmarking code snippets.


As of 3.3, time.clock() is deprecated, and it's suggested to use time.process_time() or time.perf_counter() instead.

Previously in 2.7, according to the time module docs:

time.clock()

On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically better than one microsecond.

Additionally, there is the timeit module for benchmarking code snippets.


As of 3.3, time.clock() is deprecated, and it's suggested to use time.process_time() or time.perf_counter() instead.

Previously in 2.7, according to the time module docs:

time.clock()

On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically better than one microsecond.

Additionally, there is the timeit module for benchmarking code snippets.


The short answer is: most of the time time.clock() will be better. However, if you're timing some hardware (for example some algorithm you put in the GPU), then time.clock() will get rid of this time and time.time() is the only solution left.

Note: whatever the method used, the timing will depend on factors you cannot control (when will the process switch, how often, ...), this is worse with time.time() but exists also with time.clock(), so you should never run one timing test only, but always run a series of test and look at mean/variance of the times.


The short answer is: most of the time time.clock() will be better. However, if you're timing some hardware (for example some algorithm you put in the GPU), then time.clock() will get rid of this time and time.time() is the only solution left.

Note: whatever the method used, the timing will depend on factors you cannot control (when will the process switch, how often, ...), this is worse with time.time() but exists also with time.clock(), so you should never run one timing test only, but always run a series of test and look at mean/variance of the times.


The short answer is: most of the time time.clock() will be better. However, if you're timing some hardware (for example some algorithm you put in the GPU), then time.clock() will get rid of this time and time.time() is the only solution left.

Note: whatever the method used, the timing will depend on factors you cannot control (when will the process switch, how often, ...), this is worse with time.time() but exists also with time.clock(), so you should never run one timing test only, but always run a series of test and look at mean/variance of the times.


The short answer is: most of the time time.clock() will be better. However, if you're timing some hardware (for example some algorithm you put in the GPU), then time.clock() will get rid of this time and time.time() is the only solution left.

Note: whatever the method used, the timing will depend on factors you cannot control (when will the process switch, how often, ...), this is worse with time.time() but exists also with time.clock(), so you should never run one timing test only, but always run a series of test and look at mean/variance of the times.


Others have answered re: time.time() vs. time.clock().

However, if you're timing the execution of a block of code for benchmarking/profiling purposes, you should take a look at the timeit module.


Others have answered re: time.time() vs. time.clock().

However, if you're timing the execution of a block of code for benchmarking/profiling purposes, you should take a look at the timeit module.


Others have answered re: time.time() vs. time.clock().

However, if you're timing the execution of a block of code for benchmarking/profiling purposes, you should take a look at the timeit module.


Others have answered re: time.time() vs. time.clock().

However, if you're timing the execution of a block of code for benchmarking/profiling purposes, you should take a look at the timeit module.


clock() -> floating point number

Return the CPU time or real time since the start of the process or since the first call to clock(). This has as much precision as the system records.

time() -> floating point number

Return the current time in seconds since the Epoch. Fractions of a second may be present if the system clock provides them.

Usually time() is more precise, because operating systems do not store the process running time with the precision they store the system time (ie, actual time)


clock() -> floating point number

Return the CPU time or real time since the start of the process or since the first call to clock(). This has as much precision as the system records.

time() -> floating point number

Return the current time in seconds since the Epoch. Fractions of a second may be present if the system clock provides them.

Usually time() is more precise, because operating systems do not store the process running time with the precision they store the system time (ie, actual time)


clock() -> floating point number

Return the CPU time or real time since the start of the process or since the first call to clock(). This has as much precision as the system records.

time() -> floating point number

Return the current time in seconds since the Epoch. Fractions of a second may be present if the system clock provides them.

Usually time() is more precise, because operating systems do not store the process running time with the precision they store the system time (ie, actual time)


clock() -> floating point number

Return the CPU time or real time since the start of the process or since the first call to clock(). This has as much precision as the system records.

time() -> floating point number

Return the current time in seconds since the Epoch. Fractions of a second may be present if the system clock provides them.

Usually time() is more precise, because operating systems do not store the process running time with the precision they store the system time (ie, actual time)


One thing to keep in mind: Changing the system time affects time.time() but not time.clock().

I needed to control some automatic tests executions. If one step of the test case took more than a given amount of time, that TC was aborted to go on with the next one.

But sometimes a step needed to change the system time (to check the scheduler module of the application under test), so after setting the system time a few hours in the future, the TC timeout expired and the test case was aborted. I had to switch from time.time() to time.clock() to handle this properly.


One thing to keep in mind: Changing the system time affects time.time() but not time.clock().

I needed to control some automatic tests executions. If one step of the test case took more than a given amount of time, that TC was aborted to go on with the next one.

But sometimes a step needed to change the system time (to check the scheduler module of the application under test), so after setting the system time a few hours in the future, the TC timeout expired and the test case was aborted. I had to switch from time.time() to time.clock() to handle this properly.


Depends on what you care about. If you mean WALL TIME (as in, the time on the clock on your wall), time.clock() provides NO accuracy because it may manage CPU time.


Depends on what you care about. If you mean WALL TIME (as in, the time on the clock on your wall), time.clock() provides NO accuracy because it may manage CPU time.


Depends on what you care about. If you mean WALL TIME (as in, the time on the clock on your wall), time.clock() provides NO accuracy because it may manage CPU time.


Depends on what you care about. If you mean WALL TIME (as in, the time on the clock on your wall), time.clock() provides NO accuracy because it may manage CPU time.


time() has better precision than clock() on Linux. clock() only has precision less than 10 ms. While time() gives prefect precision. My test is on CentOS 6.4, python 2.6

using time():

1 requests, response time: 14.1749382019 ms
2 requests, response time: 8.01301002502 ms
3 requests, response time: 8.01491737366 ms
4 requests, response time: 8.41021537781 ms
5 requests, response time: 8.38804244995 ms

using clock():

1 requests, response time: 10.0 ms
2 requests, response time: 0.0 ms 
3 requests, response time: 0.0 ms
4 requests, response time: 10.0 ms
5 requests, response time: 0.0 ms 
6 requests, response time: 0.0 ms
7 requests, response time: 0.0 ms 
8 requests, response time: 0.0 ms

time() has better precision than clock() on Linux. clock() only has precision less than 10 ms. While time() gives prefect precision. My test is on CentOS 6.4, python 2.6

using time():

1 requests, response time: 14.1749382019 ms
2 requests, response time: 8.01301002502 ms
3 requests, response time: 8.01491737366 ms
4 requests, response time: 8.41021537781 ms
5 requests, response time: 8.38804244995 ms

using clock():

1 requests, response time: 10.0 ms
2 requests, response time: 0.0 ms 
3 requests, response time: 0.0 ms
4 requests, response time: 10.0 ms
5 requests, response time: 0.0 ms 
6 requests, response time: 0.0 ms
7 requests, response time: 0.0 ms 
8 requests, response time: 0.0 ms

As others have noted time.clock() is deprecated in favour of time.perf_counter() or time.process_time(), but Python 3.7 introduces nanosecond resolution timing with time.perf_counter_ns(), time.process_time_ns(), and time.time_ns(), along with 3 other functions.

These 6 new nansecond resolution functions are detailed in PEP 564:

time.clock_gettime_ns(clock_id)

time.clock_settime_ns(clock_id, time:int)

time.monotonic_ns()

time.perf_counter_ns()

time.process_time_ns()

time.time_ns()

These functions are similar to the version without the _ns suffix, but return a number of nanoseconds as a Python int.

As others have also noted, use the timeit module to time functions and small code snippets.


As others have noted time.clock() is deprecated in favour of time.perf_counter() or time.process_time(), but Python 3.7 introduces nanosecond resolution timing with time.perf_counter_ns(), time.process_time_ns(), and time.time_ns(), along with 3 other functions.

These 6 new nansecond resolution functions are detailed in PEP 564:

time.clock_gettime_ns(clock_id)

time.clock_settime_ns(clock_id, time:int)

time.monotonic_ns()

time.perf_counter_ns()

time.process_time_ns()

time.time_ns()

These functions are similar to the version without the _ns suffix, but return a number of nanoseconds as a Python int.

As others have also noted, use the timeit module to time functions and small code snippets.


The difference is very platform-specific.

clock() is very different on Windows than on Linux, for example.

For the sort of examples you describe, you probably want the "timeit" module instead.


The difference is very platform-specific.

clock() is very different on Windows than on Linux, for example.

For the sort of examples you describe, you probably want the "timeit" module instead.


The difference is very platform-specific.

clock() is very different on Windows than on Linux, for example.

For the sort of examples you describe, you probably want the "timeit" module instead.


The difference is very platform-specific.

clock() is very different on Windows than on Linux, for example.

For the sort of examples you describe, you probably want the "timeit" module instead.


I use this code to compare 2 methods .My OS is windows 8 , processor core i5 , RAM 4GB

import time

def t_time():
    start=time.time()
    time.sleep(0.1)
    return (time.time()-start)


def t_clock():
    start=time.clock()
    time.sleep(0.1)
    return (time.clock()-start)




counter_time=0
counter_clock=0

for i in range(1,100):
    counter_time += t_time()

    for i in range(1,100):
        counter_clock += t_clock()

print "time() =",counter_time/100
print "clock() =",counter_clock/100

output:

time() = 0.0993799996376

clock() = 0.0993572257367

I use this code to compare 2 methods .My OS is windows 8 , processor core i5 , RAM 4GB

import time

def t_time():
    start=time.time()
    time.sleep(0.1)
    return (time.time()-start)


def t_clock():
    start=time.clock()
    time.sleep(0.1)
    return (time.clock()-start)




counter_time=0
counter_clock=0

for i in range(1,100):
    counter_time += t_time()

    for i in range(1,100):
        counter_clock += t_clock()

print "time() =",counter_time/100
print "clock() =",counter_clock/100

output:

time() = 0.0993799996376

clock() = 0.0993572257367

On Unix time.clock() measures the amount of CPU time that has been used by the current process, so it's no good for measuring elapsed time from some point in the past. On Windows it will measure wall-clock seconds elapsed since the first call to the function. On either system time.time() will return seconds passed since the epoch.

If you're writing code that's meant only for Windows, either will work (though you'll use the two differently - no subtraction is necessary for time.clock()). If this is going to run on a Unix system or you want code that is guaranteed to be portable, you will want to use time.time().


On Unix time.clock() measures the amount of CPU time that has been used by the current process, so it's no good for measuring elapsed time from some point in the past. On Windows it will measure wall-clock seconds elapsed since the first call to the function. On either system time.time() will return seconds passed since the epoch.

If you're writing code that's meant only for Windows, either will work (though you'll use the two differently - no subtraction is necessary for time.clock()). If this is going to run on a Unix system or you want code that is guaranteed to be portable, you will want to use time.time().


On Unix time.clock() measures the amount of CPU time that has been used by the current process, so it's no good for measuring elapsed time from some point in the past. On Windows it will measure wall-clock seconds elapsed since the first call to the function. On either system time.time() will return seconds passed since the epoch.

If you're writing code that's meant only for Windows, either will work (though you'll use the two differently - no subtraction is necessary for time.clock()). If this is going to run on a Unix system or you want code that is guaranteed to be portable, you will want to use time.time().


On Unix time.clock() measures the amount of CPU time that has been used by the current process, so it's no good for measuring elapsed time from some point in the past. On Windows it will measure wall-clock seconds elapsed since the first call to the function. On either system time.time() will return seconds passed since the epoch.

If you're writing code that's meant only for Windows, either will work (though you'll use the two differently - no subtraction is necessary for time.clock()). If this is going to run on a Unix system or you want code that is guaranteed to be portable, you will want to use time.time().


Short answer: use time.clock() for timing in Python.

On *nix systems, clock() returns the processor time as a floating point number, expressed in seconds. On Windows, it returns the seconds elapsed since the first call to this function, as a floating point number.

time() returns the the seconds since the epoch, in UTC, as a floating point number. There is no guarantee that you will get a better precision that 1 second (even though time() returns a floating point number). Also note that if the system clock has been set back between two calls to this function, the second function call will return a lower value.


Short answer: use time.clock() for timing in Python.

On *nix systems, clock() returns the processor time as a floating point number, expressed in seconds. On Windows, it returns the seconds elapsed since the first call to this function, as a floating point number.

time() returns the the seconds since the epoch, in UTC, as a floating point number. There is no guarantee that you will get a better precision that 1 second (even though time() returns a floating point number). Also note that if the system clock has been set back between two calls to this function, the second function call will return a lower value.


To the best of my understanding, time.clock() has as much precision as your system will allow it.


To the best of my understanding, time.clock() has as much precision as your system will allow it.


Short answer: use time.clock() for timing in Python.

On *nix systems, clock() returns the processor time as a floating point number, expressed in seconds. On Windows, it returns the seconds elapsed since the first call to this function, as a floating point number.

time() returns the the seconds since the epoch, in UTC, as a floating point number. There is no guarantee that you will get a better precision that 1 second (even though time() returns a floating point number). Also note that if the system clock has been set back between two calls to this function, the second function call will return a lower value.


Short answer: use time.clock() for timing in Python.

On *nix systems, clock() returns the processor time as a floating point number, expressed in seconds. On Windows, it returns the seconds elapsed since the first call to this function, as a floating point number.

time() returns the the seconds since the epoch, in UTC, as a floating point number. There is no guarantee that you will get a better precision that 1 second (even though time() returns a floating point number). Also note that if the system clock has been set back between two calls to this function, the second function call will return a lower value.


To the best of my understanding, time.clock() has as much precision as your system will allow it.


To the best of my understanding, time.clock() has as much precision as your system will allow it.


time.clock() was removed in Python 3.8 because it had platform-dependent behavior:

  • On Unix, return the current processor time as a floating point number expressed in seconds.
  • On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number

    print(time.clock()); time.sleep(10); print(time.clock())
    # Linux  :  0.0382  0.0384   # see Processor Time
    # Windows: 26.1224 36.1566   # see Wall-Clock Time
    

So which function to pick instead?

  • Processor Time: This is how long this specific process spends actively being executed on the CPU. Sleep, waiting for a web request, or time when only other processes are executed will not contribute to this.

    • Use time.process_time()
  • Wall-Clock Time: This refers to how much time has passed "on a clock hanging on the wall", i.e. outside real time.

    • Use time.perf_counter()

      • time.time() also measures wall-clock time but can be reset, so you could go back in time
      • time.monotonic() cannot be reset (monotonic = only goes forward) but has lower precision than time.perf_counter()

time.clock() was removed in Python 3.8 because it had platform-dependent behavior:

  • On Unix, return the current processor time as a floating point number expressed in seconds.
  • On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number

    print(time.clock()); time.sleep(10); print(time.clock())
    # Linux  :  0.0382  0.0384   # see Processor Time
    # Windows: 26.1224 36.1566   # see Wall-Clock Time
    

So which function to pick instead?

  • Processor Time: This is how long this specific process spends actively being executed on the CPU. Sleep, waiting for a web request, or time when only other processes are executed will not contribute to this.

    • Use time.process_time()
  • Wall-Clock Time: This refers to how much time has passed "on a clock hanging on the wall", i.e. outside real time.

    • Use time.perf_counter()

      • time.time() also measures wall-clock time but can be reset, so you could go back in time
      • time.monotonic() cannot be reset (monotonic = only goes forward) but has lower precision than time.perf_counter()

Right answer : They're both the same length of a fraction.

But which faster if subject is time ?

A little test case :

import timeit
import time

clock_list = []
time_list = []

test1 = """
def test(v=time.clock()):
    s = time.clock() - v
"""

test2 = """
def test(v=time.time()):
    s = time.time() - v
"""
def test_it(Range) :
    for i in range(Range) :
        clk = timeit.timeit(test1, number=10000)
        clock_list.append(clk)
        tml = timeit.timeit(test2, number=10000)
        time_list.append(tml)

test_it(100)

print "Clock Min: %f Max: %f Average: %f" %(min(clock_list), max(clock_list), sum(clock_list)/float(len(clock_list)))
print "Time  Min: %f Max: %f Average: %f" %(min(time_list), max(time_list), sum(time_list)/float(len(time_list)))

I am not work an Swiss labs but I've tested..

Based of this question : time.clock() is better than time.time()

Edit : time.clock() is internal counter so can't use outside, got limitations max 32BIT FLOAT, can't continued counting if not store first/last values. Can't merge another one counter...


Right answer : They're both the same length of a fraction.

But which faster if subject is time ?

A little test case :

import timeit
import time

clock_list = []
time_list = []

test1 = """
def test(v=time.clock()):
    s = time.clock() - v
"""

test2 = """
def test(v=time.time()):
    s = time.time() - v
"""
def test_it(Range) :
    for i in range(Range) :
        clk = timeit.timeit(test1, number=10000)
        clock_list.append(clk)
        tml = timeit.timeit(test2, number=10000)
        time_list.append(tml)

test_it(100)

print "Clock Min: %f Max: %f Average: %f" %(min(clock_list), max(clock_list), sum(clock_list)/float(len(clock_list)))
print "Time  Min: %f Max: %f Average: %f" %(min(time_list), max(time_list), sum(time_list)/float(len(time_list)))

I am not work an Swiss labs but I've tested..

Based of this question : time.clock() is better than time.time()

Edit : time.clock() is internal counter so can't use outside, got limitations max 32BIT FLOAT, can't continued counting if not store first/last values. Can't merge another one counter...


Comparing test result between Ubuntu Linux and Windows 7.

On Ubuntu

>>> start = time.time(); time.sleep(0.5); (time.time() - start)
0.5005500316619873

On Windows 7

>>> start = time.time(); time.sleep(0.5); (time.time() - start)
0.5

Comparing test result between Ubuntu Linux and Windows 7.

On Ubuntu

>>> start = time.time(); time.sleep(0.5); (time.time() - start)
0.5005500316619873

On Windows 7

>>> start = time.time(); time.sleep(0.5); (time.time() - start)
0.5

Questions with python tag:

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation Upgrade to python 3.8 using conda Unable to allocate array with shape and data type How to fix error "ERROR: Command errored out with exit status 1: python." when trying to install django-heroku using pip How to prevent Google Colab from disconnecting? "UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure." when plotting figure with pyplot on Pycharm How to fix 'Object arrays cannot be loaded when allow_pickle=False' for imdb.load_data() function? "E: Unable to locate package python-pip" on Ubuntu 18.04 Tensorflow 2.0 - AttributeError: module 'tensorflow' has no attribute 'Session' Jupyter Notebook not saving: '_xsrf' argument missing from post How to Install pip for python 3.7 on Ubuntu 18? Python: 'ModuleNotFoundError' when trying to import module from imported package OpenCV TypeError: Expected cv::UMat for argument 'src' - What is this? Requests (Caused by SSLError("Can't connect to HTTPS URL because the SSL module is not available.") Error in PyCharm requesting website How to setup virtual environment for Python in VS Code? Pylint "unresolved import" error in Visual Studio Code Pandas Merging 101 Numpy, multiply array with scalar What is the meaning of "Failed building wheel for X" in pip install? Selenium: WebDriverException:Chrome failed to start: crashed as google-chrome is no longer running so ChromeDriver is assuming that Chrome has crashed Could not install packages due to an EnvironmentError: [Errno 13] OpenCV !_src.empty() in function 'cvtColor' error ConvergenceWarning: Liblinear failed to converge, increase the number of iterations How to downgrade python from 3.7 to 3.6 I can't install pyaudio on Windows? How to solve "error: Microsoft Visual C++ 14.0 is required."? Iterating over arrays in Python 3 How do I install opencv using pip? How do I install Python packages in Google's Colab? How do I use TensorFlow GPU? How to upgrade Python version to 3.7? How to resolve TypeError: can only concatenate str (not "int") to str How can I install a previous version of Python 3 in macOS using homebrew? Flask at first run: Do not use the development server in a production environment TypeError: only integer scalar arrays can be converted to a scalar index with 1D numpy indices array What is the difference between Jupyter Notebook and JupyterLab? Pytesseract : "TesseractNotFound Error: tesseract is not installed or it's not in your path", how do I fix this? Could not install packages due to a "Environment error :[error 13]: permission denied : 'usr/local/bin/f2py'" How do I resolve a TesseractNotFoundError? Trying to merge 2 dataframes but get ValueError Authentication plugin 'caching_sha2_password' is not supported Python Pandas User Warning: Sorting because non-concatenation axis is not aligned

Questions with time tag:

Date to milliseconds and back to date in Swift How to manage Angular2 "expression has changed after it was checked" exception when a component property depends on current datetime how to sort pandas dataframe from one column Convert time.Time to string How to get current time in python and break up into year, month, day, hour, minute? Xcode swift am/pm time to 24 hour format How to add/subtract time (hours, minutes, etc.) from a Pandas DataFrame.Index whos objects are of type datetime.time? What does this format means T00:00:00.000Z? How can I parse / create a date time stamp formatted with fractional seconds UTC timezone (ISO 8601, RFC 3339) in Swift? Extract time from moment js object Swift convert unix time to date and time Python get current time in right timezone PHP: How to check if a date is today, yesterday or tomorrow How to parse unix timestamp to time.Time Python loop to run for certain amount of seconds Go / golang time.Now().UnixNano() convert to milliseconds? What is the `zero` value for time.Time in Go? How to extract epoch from LocalDate and LocalDateTime? how to sync windows time from a ntp time server in command Exception in thread "main" java.lang.Error: Unresolved compilation problems PHP Converting Integer to Date, reverse of strtotime How to get current time with jQuery Get current time in hours and minutes How to format current time using a yyyyMMddHHmmss format? How to print the current time in a Batch-File? Should MySQL have its timezone set to UTC? Checking Date format from a string in C# Get the time difference between two datetimes Convert Java string to Time, NOT Date Creating a timer in python How do I measure request and response times at once using cURL? How to delete last item in list? How do I use .toLocaleTimeString() without displaying seconds? Converting Milliseconds to Minutes and Seconds? How to multiply duration by integer? Oracle date format picture ends before converting entire input string How to print current date on python3? Convert java.util.date default format to Timestamp in Java What is the easiest way to get current GMT time in Unix timestamp format? Command to get time in milliseconds Creating java date object from year,month,day Current date and time as string how to re-format datetime string in php? Update TextView Every Second Current time formatting with Javascript How to measure time taken between lines of code in python? Is Android using NTP to sync time? Getting time difference between two times in PHP Does Python's time.time() return the local or UTC timestamp? PHP: How to get current time in hour:minute:second?