[python] How does numpy.newaxis work and when to use it?

What is np.newaxis?

The np.newaxis is just an alias for the Python constant None, which means that wherever you use np.newaxis you could also use None:

>>> np.newaxis is None
True

It's just more descriptive if you read code that uses np.newaxis instead of None.

How to use np.newaxis?

The np.newaxis is generally used with slicing. It indicates that you want to add an additional dimension to the array. The position of the np.newaxis represents where I want to add dimensions.

>>> import numpy as np
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a.shape
(10,)

In the first example I use all elements from the first dimension and add a second dimension:

>>> a[:, np.newaxis]
array([[0],
       [1],
       [2],
       [3],
       [4],
       [5],
       [6],
       [7],
       [8],
       [9]])
>>> a[:, np.newaxis].shape
(10, 1)

The second example adds a dimension as first dimension and then uses all elements from the first dimension of the original array as elements in the second dimension of the result array:

>>> a[np.newaxis, :]  # The output has 2 [] pairs!
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
>>> a[np.newaxis, :].shape
(1, 10)

Similarly you can use multiple np.newaxis to add multiple dimensions:

>>> a[np.newaxis, :, np.newaxis]  # note the 3 [] pairs in the output
array([[[0],
        [1],
        [2],
        [3],
        [4],
        [5],
        [6],
        [7],
        [8],
        [9]]])
>>> a[np.newaxis, :, np.newaxis].shape
(1, 10, 1)

Are there alternatives to np.newaxis?

There is another very similar functionality in NumPy: np.expand_dims, which can also be used to insert one dimension:

>>> np.expand_dims(a, 1)  # like a[:, np.newaxis]
>>> np.expand_dims(a, 0)  # like a[np.newaxis, :]

But given that it just inserts 1s in the shape you could also reshape the array to add these dimensions:

>>> a.reshape(a.shape + (1,))  # like a[:, np.newaxis]
>>> a.reshape((1,) + a.shape)  # like a[np.newaxis, :]

Most of the times np.newaxis is the easiest way to add dimensions, but it's good to know the alternatives.

When to use np.newaxis?

In several contexts is adding dimensions useful:

  • If the data should have a specified number of dimensions. For example if you want to use matplotlib.pyplot.imshow to display a 1D array.

  • If you want NumPy to broadcast arrays. By adding a dimension you could for example get the difference between all elements of one array: a - a[:, np.newaxis]. This works because NumPy operations broadcast starting with the last dimension 1.

  • To add a necessary dimension so that NumPy can broadcast arrays. This works because each length-1 dimension is simply broadcast to the length of the corresponding1 dimension of the other array.


1 If you want to read more about the broadcasting rules the NumPy documentation on that subject is very good. It also includes an example with np.newaxis:

>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[  1.,   2.,   3.],
       [ 11.,  12.,  13.],
       [ 21.,  22.,  23.],
       [ 31.,  32.,  33.]])

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to numpy

Unable to allocate array with shape and data type How to fix 'Object arrays cannot be loaded when allow_pickle=False' for imdb.load_data() function? Numpy, multiply array with scalar TypeError: only integer scalar arrays can be converted to a scalar index with 1D numpy indices array Could not install packages due to a "Environment error :[error 13]: permission denied : 'usr/local/bin/f2py'" Pytorch tensor to numpy array Numpy Resize/Rescale Image what does numpy ndarray shape do? How to round a numpy array? numpy array TypeError: only integer scalar arrays can be converted to a scalar index

Examples related to multidimensional-array

what does numpy ndarray shape do? len() of a numpy array in python What is the purpose of meshgrid in Python / NumPy? Convert a numpy.ndarray to string(or bytes) and convert it back to numpy.ndarray Typescript - multidimensional array initialization How to get every first element in 2 dimensional list How does numpy.newaxis work and when to use it? How to count the occurrence of certain item in an ndarray? Iterate through 2 dimensional array Selecting specific rows and columns from NumPy array

Examples related to array-broadcasting

How does numpy.newaxis work and when to use it? Numpy `ValueError: operands could not be broadcast together with shape ...`

Examples related to numpy-ndarray

what does numpy ndarray shape do? What is the purpose of meshgrid in Python / NumPy? Convert array of indices to 1-hot encoded numpy array How does numpy.newaxis work and when to use it? How to create a numpy array of all True or all False? What does -1 mean in numpy reshape? What is the difference between ndarray and array in numpy? Paritition array into N chunks with Numpy Concatenating two one-dimensional NumPy arrays How do I get indices of N maximum values in a NumPy array?