[sql-server] List of all index & index columns in SQL Server DB

How do I get a list of all index & index columns in SQL Server 2005+? The closest I could get is:

select s.name, t.name, i.name, c.name from sys.tables t
inner join sys.schemas s on t.schema_id = s.schema_id
inner join sys.indexes i on i.object_id = t.object_id
inner join sys.index_columns ic on ic.object_id = t.object_id
inner join sys.columns c on c.object_id = t.object_id and
        ic.column_id = c.column_id

where i.index_id > 0    
 and i.type in (1, 2) -- clustered & nonclustered only
 and i.is_primary_key = 0 -- do not include PK indexes
 and i.is_unique_constraint = 0 -- do not include UQ
 and i.is_disabled = 0
 and i.is_hypothetical = 0
 and ic.key_ordinal > 0

order by ic.key_ordinal

Which is not exactly what I want.
What I want is, to list all user-defined indexes, (which means no indexes which support unique constraints & primary keys) with all columns (ordered by how do they appear in index definition) plus as much metadata as possible.

This question is related to sql-server tsql indexing reverse-engineering

The answer is


sELECT 
     TableName = t.name,
     IndexName = ind.name,
     --IndexId = ind.index_id,
     ColumnId = ic.index_column_id,
     ColumnName = col.name,
     key_ordinal,
     ind.type_desc
     --ind.*,
     --ic.*,
     --col.* 
FROM 
     sys.indexes ind 
INNER JOIN 
     sys.index_columns ic ON  ind.object_id = ic.object_id and ind.index_id = ic.index_id 
INNER JOIN 
     sys.columns col ON ic.object_id = col.object_id and ic.column_id = col.column_id 
INNER JOIN 
     sys.tables t ON ind.object_id = t.object_id 
WHERE 
     ind.is_primary_key = 0 
     AND ind.is_unique = 0 
     AND ind.is_unique_constraint = 0 
     AND t.is_ms_shipped = 0 
     and t.name='CompanyReconciliation' --table name
     and key_ordinal>0
ORDER BY 
     t.name, ind.name, ind.index_id, ic.index_column_id 

In Oracle

select CONNECYBY.SCHEMA_NAME,CONNECYBY.TABLE_NAME,CONNECYBY.INDEX_NAME,CONNECYBY.COLUMN_NAME
from (  select TABLE_OWNER SCHEMA_NAME,TABLE_NAME,INDEX_NAME,COLUMN_POSITION,trim(',' from sys_connect_by_path(COLUMN_NAME,',')) COLUMN_NAME
        from DBA_IND_COLUMNS
        start with COLUMN_POSITION = 1
        connect by TABLE_OWNER = prior TABLE_OWNER
        and TABLE_NAME = prior TABLE_NAME
        and INDEX_NAME = prior INDEX_NAME
        and COLUMN_POSITION = prior COLUMN_POSITION + 1) CONNECYBY
join (  select TABLE_OWNER SCHEMA_NAME,TABLE_NAME,INDEX_NAME,max(COLUMN_POSITION) COLUMN_POSITION
        from DBA_IND_COLUMNS
        group by TABLE_OWNER,TABLE_NAME,INDEX_NAME) MAX_CONNECYBY
on (    CONNECYBY.SCHEMA_NAME = MAX_CONNECYBY.SCHEMA_NAME
        and CONNECYBY.TABLE_NAME = MAX_CONNECYBY.TABLE_NAME
        and CONNECYBY.INDEX_NAME = MAX_CONNECYBY.INDEX_NAME
        and CONNECYBY.COLUMN_POSITION = MAX_CONNECYBY.COLUMN_POSITION)
order by CONNECYBY.SCHEMA_NAME,CONNECYBY.TABLE_NAME,CONNECYBY.INDEX_NAME

In SQL Server with

CONNECTBY(SCHEMA_NAME,TABLE_NAME,INDEX_NAME,INDEX_COLUMN_ID,COLUMN_NAME) 
as 
    (   select SCHEMAS.NAME SCHEMA_NAME
            , TABLES.NAME TABLE_NAME
            , INDEXES.NAME INDEX_NAME
            , INDEX_COLUMNS.INDEX_COLUMN_ID INDEX_COLUMN_ID
            , cast(COLUMNS.NAME AS VARCHAR(MAX)) COLUMN_NAME
        from SYS.INDEXES
        join SYS.TABLES on (INDEXES.OBJECT_ID = TABLES.OBJECT_ID)
        join SYS.SCHEMAS on (TABLES.SCHEMA_ID = SCHEMAS.SCHEMA_ID)
        join SYS.INDEX_COLUMNS on ( INDEXES.OBJECT_ID = INDEX_COLUMNS.OBJECT_ID 
                                    and INDEX_COLUMNS.INDEX_ID = INDEXES.INDEX_ID)
        join SYS.COLUMNS on (   INDEXES.OBJECT_ID = COLUMNS.OBJECT_ID 
                                and INDEX_COLUMNS.COLUMN_ID = COLUMNS.COLUMN_ID)
        where INDEX_COLUMNS.INDEX_COLUMN_ID = 1
        union all
        select SCHEMAS.NAME SCHEMA_NAME
            , TABLES.NAME TABLE_NAME
            , INDEXES.NAME INDEX_NAME
            , INDEX_COLUMNS.INDEX_COLUMN_ID INDEX_COLUMN_ID
            , cast(PRIOR.COLUMN_NAME + ',' + COLUMNS.NAME AS VARCHAR(MAX)) COLUMN_NAME
        from SYS.INDEXES
        join SYS.TABLES on (INDEXES.OBJECT_ID = TABLES.OBJECT_ID)
        join SYS.SCHEMAS on (TABLES.SCHEMA_ID = SCHEMAS.SCHEMA_ID)
        join SYS.INDEX_COLUMNS on ( INDEXES.OBJECT_ID = INDEX_COLUMNS.OBJECT_ID 
                                    and INDEX_COLUMNS.INDEX_ID = INDEXES.INDEX_ID)
        join SYS.COLUMNS on (   INDEXES.OBJECT_ID = COLUMNS.OBJECT_ID 
                                and INDEX_COLUMNS.COLUMN_ID = COLUMNS.COLUMN_ID)
        join CONNECTBY as PRIOR on (SCHEMAS.NAME = PRIOR.SCHEMA_NAME 
                                    and TABLES.NAME = PRIOR.TABLE_NAME 
                                    and INDEXES.NAME = PRIOR.INDEX_NAME 
                                    and INDEX_COLUMNS.INDEX_COLUMN_ID = PRIOR.INDEX_COLUMN_ID + 1))
select CONNECTBY.SCHEMA_NAME,CONNECTBY.TABLE_NAME,CONNECTBY.INDEX_NAME,CONNECTBY.COLUMN_NAME
from CONNECTBY
join (  select  SCHEMA_NAME
                , TABLE_NAME
                , INDEX_NAME
                , MAX(INDEX_COLUMN_ID) INDEX_COLUMN_ID
        from CONNECTBY 
        group by SCHEMA_NAME,TABLE_NAME,INDEX_NAME) MAX_CONNECTBY
        on (CONNECTBY.SCHEMA_NAME = MAX_CONNECTBY.SCHEMA_NAME
            and CONNECTBY.TABLE_NAME = MAX_CONNECTBY.TABLE_NAME
            and CONNECTBY.INDEX_NAME = MAX_CONNECTBY.INDEX_NAME
            and CONNECTBY.INDEX_COLUMN_ID = MAX_CONNECTBY.INDEX_COLUMN_ID)
order by CONNECTBY.SCHEMA_NAME,CONNECTBY.TABLE_NAME,CONNECTBY.INDEX_NAME

Working solution for SQL Server 2014. I have included only a handful of output fields here but feel free to add in as many as you like.

SELECT
    o.object_id AS objectId
    ,o.name AS objectName
    ,i.index_id AS indexId
    ,i.name AS indexName
    ,i.type_desc AS typeDesc
    ,ic.index_column_id AS indexColumnId
    ,ic.key_ordinal AS keyOrdinal
    ,ic.is_included_column AS isIncludedColumn
    ,ic.column_id AS columnId
    ,c.name AS columnName
FROM {database}.sys.objects AS o
    INNER JOIN {database}.sys.columns AS c ON
        c.object_id = o.object_id
        AND o.type = 'U'
    INNER JOIN {database}.sys.indexes AS i ON
        i.object_id = o.object_id
    INNER JOIN {database}.sys.index_columns AS ic ON
        ic.object_id = i.object_id
        AND ic.index_id = i.index_id
        AND ic.column_id = c.column_id
ORDER BY
    o.object_id
    ,i.index_id
    ,ic.index_column_id

Just note that if you are going to use any of the above working queries to script your indexes, you need to incorporate filter_definition column from sys.indexes table in your queries to get the filter definition of non-clustered indexes in SQL 2008+

AM


this will work:

DECLARE @IndexInfo  TABLE (index_name         varchar(250)
                          ,index_description  varchar(250)
                          ,index_keys         varchar(250)
                          )

INSERT INTO @IndexInfo
exec sp_msforeachtable 'sp_helpindex ''?'''
select * from @IndexInfo

this does not reurn the table name and you will get warnings for all tables without an index, if that is a problem, you can create a loop over the tables that have indexes like this:

DECLARE @IndexInfoTemp  TABLE (index_name         varchar(250)
                              ,index_description  varchar(250)
                              ,index_keys         varchar(250)
                              )

DECLARE @IndexInfo  TABLE (table_name         sysname
                          ,index_name         varchar(250)
                          ,index_description  varchar(250)
                          ,index_keys         varchar(250)
                          )

DECLARE @Tables Table (RowID       int not null identity(1,1)
                      ,TableName   sysname 
                      )
DECLARE @MaxRow       int
DECLARE @CurrentRow   int
DECLARE @CurrentTable sysname

INSERT INTO @Tables
    SELECT
        DISTINCT t.name 
        FROM sys.indexes i
            INNER JOIN sys.tables t ON i.object_id = t.object_id
        WHERE i.Name IS NOT NULL
SELECT @MaxRow=@@ROWCOUNT,@CurrentRow=1

WHILE @CurrentRow<=@MaxRow
BEGIN

    SELECT @CurrentTable=TableName FROM @Tables WHERE RowID=@CurrentRow

    INSERT INTO @IndexInfoTemp
    exec sp_helpindex @CurrentTable

    INSERT INTO @IndexInfo
            (table_name   , index_name , index_description , index_keys)
        SELECT
            @CurrentTable , index_name , index_description , index_keys
        FROM @IndexInfoTemp

    DELETE FROM @IndexInfoTemp

    SET @CurrentRow=@CurrentRow+1

END --WHILE
SELECT * from @IndexInfo

EDIT
if you want, you can filter the data, here are some examples (these work for either method):

SELECT * FROM @IndexInfo WHERE index_description NOT LIKE '%primary key%'
SELECT * FROM @IndexInfo WHERE index_description NOT LIKE '%nonclustered%' AND index_description  LIKE '%clustered%'
SELECT * FROM @IndexInfo WHERE index_description LIKE '%unique%'

Here is the best way to do it:

SELECT sys.tables.object_id, sys.tables.name as table_name, sys.columns.name as column_name, sys.indexes.name as index_name,
sys.indexes.is_unique, sys.indexes.is_primary_key 
FROM sys.tables, sys.indexes, sys.index_columns, sys.columns 
WHERE (sys.tables.object_id = sys.indexes.object_id AND sys.tables.object_id = sys.index_columns.object_id AND sys.tables.object_id = sys.columns.object_id
AND sys.indexes.index_id = sys.index_columns.index_id AND sys.index_columns.column_id = sys.columns.column_id) 
AND sys.tables.name = 'your_table_name'

I prefer using implicit joins as it's much easier for me to understand. You can remove the object_id reference as you might not need it.

Cheers.


I came up with this one, which is giving me the exact overview I need. What is helps is that you get one row per index into which the index columns are aggregated.

select 
    o.name as ObjectName, 
    i.name as IndexName, 
    i.is_primary_key as [PrimaryKey],
    SUBSTRING(i.[type_desc],0,6) as IndexType,
    i.is_unique as [Unique],
    Columns.[Normal] as IndexColumns,
    Columns.[Included] as IncludedColumns
from sys.indexes i 
join sys.objects o on i.object_id = o.object_id
cross apply
(
    select
        substring
        (
            (
                select ', ' + co.[name]
                from sys.index_columns ic
                join sys.columns co on co.object_id = i.object_id and co.column_id = ic.column_id
                where ic.object_id = i.object_id and ic.index_id = i.index_id and ic.is_included_column = 0
                order by ic.key_ordinal
                for xml path('')
            )
            , 3
            , 10000
        )    as [Normal]    
        , substring
        (
            (
                select ', ' + co.[name]
                from sys.index_columns ic
                join sys.columns co on co.object_id = i.object_id and co.column_id = ic.column_id
                where ic.object_id = i.object_id and ic.index_id = i.index_id and ic.is_included_column = 1
                order by ic.key_ordinal
                for xml path('')
            )
            , 3
            , 10000
        )    as [Included]    

) Columns
where o.[type] = 'U' --USER_TABLE
order by o.[name], i.[name], i.is_primary_key desc

This is a way of backing into the indexes. You can use SHOWCONTIG to assess fragmentation. It will list all of the indexes for the database or table, along with statistics. I would caution that on a large database, it can be long-running. For me, one of the benefits of this approach is that you don't have to be an admin to use it.

--Show fragmentation info on all indexes in a database

SET NOCOUNT ON
USE pubs
DBCC SHOWCONTIG WITH ALL_INDEXES
GO

...turn NOCOUNT back OFF when done

--Show fragmentation info on all indexes on a table

SET NOCOUNT ON
USE pubs
DBCC SHOWCONTIG (authors) WITH ALL_INDEXES
GO

--Show fragmentation information on a specific index

SET NOCOUNT ON
USE pubs
DBCC SHOWCONTIG (authors,aunmind)
GO

Based on the accepted answer and two other questions 1, 2 I have assembled the following query:

SELECT
    QUOTENAME(t.name) AS TableName,
    QUOTENAME(i.name) AS IndexName,
    i.is_primary_key,
    i.is_unique,
    i.is_unique_constraint,
    STUFF(REPLACE(REPLACE((
        SELECT QUOTENAME(c.name) + CASE WHEN ic.is_descending_key = 1 THEN ' DESC' ELSE '' END AS [data()]
        FROM sys.index_columns AS ic
        INNER JOIN sys.columns AS c ON ic.object_id = c.object_id AND ic.column_id = c.column_id
        WHERE ic.object_id = i.object_id AND ic.index_id = i.index_id AND ic.is_included_column = 0
        ORDER BY ic.key_ordinal
        FOR XML PATH
    ), '<row>', ', '), '</row>', ''), 1, 2, '') AS KeyColumns,
    STUFF(REPLACE(REPLACE((
        SELECT QUOTENAME(c.name) AS [data()]
        FROM sys.index_columns AS ic
        INNER JOIN sys.columns AS c ON ic.object_id = c.object_id AND ic.column_id = c.column_id
        WHERE ic.object_id = i.object_id AND ic.index_id = i.index_id AND ic.is_included_column = 1
        ORDER BY ic.index_column_id
        FOR XML PATH
    ), '<row>', ', '), '</row>', ''), 1, 2, '') AS IncludedColumns,
    u.user_seeks,
    u.user_scans,
    u.user_lookups,
    u.user_updates
FROM sys.tables AS t
INNER JOIN sys.indexes AS i ON t.object_id = i.object_id
LEFT JOIN sys.dm_db_index_usage_stats AS u ON i.object_id = u.object_id AND i.index_id = u.index_id
WHERE t.is_ms_shipped = 0
AND i.type <> 0

This query returns results such as below which shows the list of indexes, their columns and usage. Very helpful in determining which index is performing better than others:

index list, columns and usage


I gave KFD9's answer an update.

I adapted their version to support the include-specification and not make use of indexkey_property which is deprecated

This gives you a create and a drop statement for indexes and constraints.

with indexes as (
    SELECT
      schema_name(schema_id) as SchemaName, OBJECT_NAME(si.object_id) as TableName, si.name as IndexName,
      (CASE is_primary_key WHEN 1 THEN 'PK' ELSE '' END) as PK,
      (CASE is_unique WHEN 1 THEN '1' ELSE '0' END)+' '+
      (CASE si.type WHEN 1 THEN 'C' WHEN 3 THEN 'X' ELSE 'B' END)+' ' as 'Type',  -- B=basic, C=Clustered, X=XML
      (select string_agg(CAST('[' + c.name + ']' + case when is_descending_key = 1 then ' DESC' else '' end AS NVARCHAR(MAX)), ',') within group (order by index_column_id) 
         from sys.index_columns ic JOIN sys.columns c on ic.column_id = c.column_id and ic.object_id = c.object_id where ic.index_id = si.index_id and ic.object_id = si.object_id and ic.is_included_column = 0) Cols,
      (select string_agg(CAST('[' + c.name + ']' + case when is_descending_key = 1 then ' DESC' else '' end AS NVARCHAR(MAX)), ',') within group (order by index_column_id) 
         from sys.index_columns ic JOIN sys.columns c on ic.column_id = c.column_id and ic.object_id = c.object_id where ic.index_id = si.index_id and ic.object_id = si.object_id and ic.is_included_column = 1) IncludedCols,
      (select count(*) from sys.index_columns ic where ic.index_id = si.index_id and ic.object_id = si.object_id) IndexColsCount
    FROM sys.indexes as si
    LEFT JOIN sys.objects as so on so.object_id=si.object_id
    WHERE index_id>0 -- omit the default heap
      and OBJECTPROPERTY(si.object_id,'IsMsShipped')=0 -- omit system tables
      and not (schema_name(schema_id)='dbo' and OBJECT_NAME(si.object_id)='sysdiagrams') -- omit sysdiagrams
)
SELECT SchemaName, TableName, IndexName,
  (CASE pk
    WHEN 'PK' THEN 'ALTER '+
     'TABLE ['+SchemaName+'].['+TableName+'] ADD CONSTRAINT ['+IndexName+'] PRIMARY KEY'+
     (CASE substring(Type,3,1) WHEN 'C' THEN ' CLUSTERED' ELSE '' END)
    ELSE 'CREATE '+
     (CASE substring(Type,1,1) WHEN '1' THEN 'UNIQUE ' ELSE '' END)+
     (CASE substring(Type,3,1) WHEN 'C' THEN 'CLUSTERED ' ELSE '' END)+
     'INDEX ['+IndexName+'] ON ['+SchemaName+'].['+TableName+']'
    END)+
  ' ('+Cols+')'+
  isnull(' include ('+IncludedCols+')', '')+
  '' as CreateIndex,
    CASE pk
    WHEN 'PK' THEN 'ALTER '+
     'TABLE ['+SchemaName+'].['+TableName+'] DROP CONSTRAINT ['+IndexName+'] '
    ELSE 'DROP INDEX ['+IndexName+'] ON ['+SchemaName+'].['+TableName + ']'
    END AS DropIndex,
    IndexColsCount
FROM indexes
ORDER BY SchemaName,TableName,IndexName

I didn't go through, but I got what I wanted in the query posted by the original author.

I used it (without conditions/filters) for my requirement but it gave incorrect results

The main problem was the results getting cross product without join condition on index_id

SELECT S.NAME SCHEMA_NAME,T.NAME TABLE_NAME,I.NAME INDEX_NAME,C.NAME COLUMN_NAME
  FROM SYS.TABLES T
       INNER JOIN SYS.SCHEMAS S
    ON T.SCHEMA_ID = S.SCHEMA_ID
       INNER JOIN SYS.INDEXES I
    ON I.OBJECT_ID = T.OBJECT_ID
       INNER JOIN SYS.INDEX_COLUMNS IC
    ON IC.OBJECT_ID = T.OBJECT_ID
       INNER JOIN SYS.COLUMNS C
    ON C.OBJECT_ID  = T.OBJECT_ID
   **AND IC.INDEX_ID    = I.INDEX_ID**
   AND IC.COLUMN_ID = C.COLUMN_ID
 WHERE 1=1

ORDER BY I.NAME,I.INDEX_ID,IC.KEY_ORDINAL

The query below includes all of the pertinent information for the user-defined indexes, (no indexes for unique constraints & primary keys) with all columns:

SELECT I.name as IndexName, 
        CASE WHEN I.is_unique = 1 THEN 'Yes' ELSE 'No' END as 'Unique',
        I.type_desc COLLATE DATABASE_DEFAULT as Index_Type,
        '[' + SCHEMA_NAME(T.schema_id) + ']' as 'Schema',
        '[' + T.name + ']' as TableName,
        STUFF((SELECT ', [' + C.name + CASE WHEN IC.is_descending_key = 0 THEN '] ASC' ELSE '] DESC' END
            FROM sys.index_columns IC INNER JOIN sys.columns C ON  IC.object_id = C.object_id  AND IC.column_id = C.column_id
            WHERE IC.is_included_column = 0 AND IC.object_id = I.object_id AND IC.index_id = I.Index_id
            FOR XML PATH('')), 1, 2, '') as Key_Columns,
        Included_Columns, 
        I.filter_definition,
        CASE WHEN I.is_padded = 1 THEN 'ON' ELSE 'OFF' END as PAD_INDEX, 
        CASE WHEN ST.no_recompute = 0 THEN 'OFF' ELSE 'ON' END as [Statistics_Norecompute],
        CONVERT(VARCHAR(5), CASE WHEN I.fill_factor = 0 THEN 100 ELSE I.fill_factor END) as [Fillfactor],
        CASE WHEN I.ignore_dup_key = 1 THEN 'ON' ELSE 'OFF' END as [Ignore_Dup_Key],       
        CASE WHEN I.allow_row_locks = 1 THEN 'ON' ELSE 'OFF' END as [Allow_Row_Locks], 
        CASE WHEN I.allow_page_locks = 1 THEN 'ON' ELSE 'OFF' END [Allow_Page_Locks]        
FROM    sys.indexes I INNER JOIN        
        sys.tables T ON  T.object_id = I.object_id INNER JOIN       
        sys.stats ST ON  ST.object_id = I.object_id AND ST.stats_id = I.index_id INNER JOIN 
        sys.data_spaces DS ON  I.data_space_id = DS.data_space_id INNER JOIN 
        sys.filegroups FG ON  I.data_space_id = FG.data_space_id LEFT OUTER JOIN 
        (SELECT * FROM 
            (SELECT IC2.object_id, IC2.index_id,
                STUFF((SELECT ', ' + C.name FROM sys.index_columns IC1 INNER JOIN 
                    sys.columns C ON C.object_id = IC1.object_id
                        AND C.column_id = IC1.column_id
                        AND IC1.is_included_column = 1
                    WHERE  IC1.object_id = IC2.object_id AND IC1.index_id = IC2.index_id
                    GROUP BY IC1.object_id, C.name, index_id  FOR XML PATH('')
                ), 1, 2, '') as Included_Columns
            FROM sys.index_columns IC2
            GROUP BY IC2.object_id, IC2.index_id) tmp1
            WHERE Included_Columns IS NOT NULL
        ) tmp2
        ON tmp2.object_id = I.object_id AND tmp2.index_id = I.index_id
WHERE I.is_primary_key = 0 AND I.is_unique_constraint = 0;

As an added bonus, the below query is formatted to write out the create index and drop index scripts:

SELECT I.name as IndexName, 
        -- Uncommnent line below to include checking for index exists as part of the script
        --'IF NOT EXISTS (SELECT name FROM sysindexes WHERE name = '''+ I.name +''') ' +
        'CREATE ' + CASE WHEN I.is_unique = 1 THEN ' UNIQUE ' ELSE '' END +
        I.type_desc COLLATE DATABASE_DEFAULT + ' INDEX [' +
        I.name + '] ON [' + SCHEMA_NAME(T.schema_id) + '].[' + T.name + '] (' + STUFF(
        (SELECT ', [' + C.name + CASE WHEN IC.is_descending_key = 0 THEN '] ASC' ELSE '] DESC' END
            FROM sys.index_columns IC INNER JOIN sys.columns C ON  IC.object_id = C.object_id  AND IC.column_id = C.column_id
            WHERE IC.is_included_column = 0 AND IC.object_id = I.object_id AND IC.index_id = I.Index_id
            FOR XML PATH('')), 1, 2, '')  + ') ' +
        ISNULL(' INCLUDE (' + IncludedColumns + ') ', '') +
        ISNULL(' WHERE ' + I.filter_definition, '') + 
        'WITH (PAD_INDEX = ' + CASE WHEN I.is_padded = 1 THEN 'ON' ELSE 'OFF' END + 
        ', STATISTICS_NORECOMPUTE = ' + CASE WHEN ST.no_recompute = 0 THEN 'OFF' ELSE 'ON' END + 
        ', SORT_IN_TEMPDB = OFF' + 
        ', FILLFACTOR = ' + CONVERT(VARCHAR(5), CASE WHEN I.fill_factor = 0 THEN 100 ELSE I.fill_factor END) +
        ', IGNORE_DUP_KEY = ' + CASE WHEN I.ignore_dup_key = 1 THEN 'ON' ELSE 'OFF' END +      
        ', ONLINE = OFF' + 
        ', ALLOW_ROW_LOCKS = ' + CASE WHEN I.allow_row_locks = 1 THEN 'ON' ELSE 'OFF' END + 
        ', ALLOW_PAGE_LOCKS = ' + CASE WHEN I.allow_page_locks = 1 THEN 'ON' ELSE 'OFF' END + 
        ') ON [' + DS.name + '];' + CHAR(13) + CHAR(10) + 'GO' as [CreateIndex],
        'DROP INDEX ['+ I.name +'] ON ['+ SCHEMA_NAME(T.schema_id) +'].['+ T.name +'];' +
        CHAR(13) + CHAR(10) + 'GO' AS [DropIndex]
FROM    sys.indexes I INNER JOIN        
        sys.tables T ON  T.object_id = I.object_id INNER JOIN       
        sys.stats ST ON  ST.object_id = I.object_id AND ST.stats_id = I.index_id INNER JOIN 
        sys.data_spaces DS ON  I.data_space_id = DS.data_space_id INNER JOIN 
        sys.filegroups FG ON  I.data_space_id = FG.data_space_id LEFT OUTER JOIN 
        (SELECT * FROM 
            (SELECT IC2.object_id, IC2.index_id,
                STUFF((SELECT ', ' + C.name FROM sys.index_columns IC1 INNER JOIN 
                    sys.columns C ON C.object_id = IC1.object_id
                        AND C.column_id = IC1.column_id
                        AND IC1.is_included_column = 1
                    WHERE  IC1.object_id = IC2.object_id AND IC1.index_id = IC2.index_id
                    GROUP BY IC1.object_id, C.name, index_id  FOR XML PATH('')
                ), 1, 2, '') as IncludedColumns
            FROM sys.index_columns IC2
            GROUP BY IC2.object_id, IC2.index_id) tmp1
            WHERE IncludedColumns IS NOT NULL
        ) tmp2
        ON tmp2.object_id = I.object_id AND tmp2.index_id = I.index_id
WHERE I.is_primary_key = 0 AND I.is_unique_constraint = 0 

For unique columns per index:

select s.name, t.name, i.name, i.index_id,c.name,c.column_id
 from sys.schemas s
inner join sys.tables t on t.schema_id = s.schema_id
inner join sys.indexes i on i.object_id = t.object_id
inner join sys.index_columns ic on ic.object_id = t.object_id
    and ic.index_id=i.index_id
inner join sys.columns c on c.object_id = t.object_id 
    and ic.column_id = c.column_id
where i.object_id = object_id('previous.account_1')  
order by index_id,column_id

with connect(schema_name,table_name,index_name,index_column_id,column_name) as
(   select s.name schema_name, t.name table_name, i.name index_name, index_column_id, cast(c.name as varchar(max)) column_name
 from sys.tables t
inner join sys.schemas s on t.schema_id = s.schema_id
inner join sys.indexes i on i.object_id = t.object_id
inner join sys.index_columns ic on ic.object_id = t.object_id and ic.index_id=i.index_id
        inner join sys.columns c on c.object_id = t.object_id and
                ic.column_id = c.column_id
                where index_column_id=1
union all
select s.name schema_name, t.name table_name, i.name index_name, ic.index_column_id, cast(connect.column_name + ',' + c.name as varchar(max)) column_name
 from sys.tables t
inner join sys.schemas s on t.schema_id = s.schema_id
inner join sys.indexes i on i.object_id = t.object_id
inner join sys.index_columns ic on ic.object_id = t.object_id and ic.index_id=i.index_id
        inner join sys.columns c on c.object_id = t.object_id and
                ic.column_id = c.column_id join connect on
connect.index_column_id+1 = ic.index_column_id
and connect.schema_name = s.name
and connect.table_name = t.name
and connect.index_name = i.name)
select connect.schema_name,connect.table_name,connect.index_name,connect.column_name
from connect join (select schema_name,table_name,index_name,MAX(index_column_id) index_column_id
from connect group by schema_name,table_name,index_name) mx
on connect.schema_name = mx.schema_name
and connect.table_name = mx.table_name
and connect.index_name = mx.index_name
and connect.index_column_id = mx.index_column_id
order by 1,2,3

I have needed to get particular indexes, their index columns and their included columns as well. Here is the query I have used:

SELECT INX.[name] AS [Index Name]
      ,TBL.[name] AS [Table Name]
      ,DS1.[IndexColumnsNames]
      ,DS2.[IncludedColumnsNames]
FROM [sys].[indexes] INX
INNER JOIN [sys].[tables] TBL
    ON INX.[object_id] = TBL.[object_id]
CROSS APPLY 
(
    SELECT STUFF
    (
        (
            SELECT ' [' + CLS.[name] + ']'
            FROM [sys].[index_columns] INXCLS
            INNER JOIN [sys].[columns] CLS 
                ON INXCLS.[object_id] = CLS.[object_id] 
                AND INXCLS.[column_id] = CLS.[column_id]
            WHERE INX.[object_id] = INXCLS.[object_id] 
                AND INX.[index_id] = INXCLS.[index_id]
                AND INXCLS.[is_included_column] = 0
            FOR XML PATH('')
        )
        ,1
        ,1
        ,''
    ) 
) DS1 ([IndexColumnsNames])
CROSS APPLY 
(
    SELECT STUFF
    (
        (
            SELECT ' [' + CLS.[name] + ']'
            FROM [sys].[index_columns] INXCLS
            INNER JOIN [sys].[columns] CLS 
                ON INXCLS.[object_id] = CLS.[object_id] 
                AND INXCLS.[column_id] = CLS.[column_id]
            WHERE INX.[object_id] = INXCLS.[object_id] 
                AND INX.[index_id] = INXCLS.[index_id]
                AND INXCLS.[is_included_column] = 1
            FOR XML PATH('')
        )
        ,1
        ,1
        ,''
    ) 
) DS2 ([IncludedColumnsNames])

The following works on SQL Server 2014/2016 as well as any Microsoft Azure SQL Database.

Produces a comprehensive result set that is easily exportable to Notepad/Excel for slicing and dicing and includes

  1. Table Name
  2. Index Name
  3. Index Description
  4. Indexed Columns - In order
  5. Included Columns - In order
 SELECT '[' + s.NAME + '].[' + o.NAME + ']' AS 'table_name'
    ,+ i.NAME AS 'index_name'
    ,LOWER(i.type_desc) + CASE 
        WHEN i.is_unique = 1
            THEN ', unique'
        ELSE ''
        END + CASE 
        WHEN i.is_primary_key = 1
            THEN ', primary key'
        ELSE ''
        END AS 'index_description'
    ,STUFF((
            SELECT ', [' + sc.NAME + ']' AS "text()"
            FROM syscolumns AS sc
            INNER JOIN sys.index_columns AS ic ON ic.object_id = sc.id
                AND ic.column_id = sc.colid
            WHERE sc.id = so.object_id
                AND ic.index_id = i1.indid
                AND ic.is_included_column = 0
            ORDER BY key_ordinal
            FOR XML PATH('')
            ), 1, 2, '') AS 'indexed_columns'
    ,STUFF((
            SELECT ', [' + sc.NAME + ']' AS "text()"
            FROM syscolumns AS sc
            INNER JOIN sys.index_columns AS ic ON ic.object_id = sc.id
                AND ic.column_id = sc.colid
            WHERE sc.id = so.object_id
                AND ic.index_id = i1.indid
                AND ic.is_included_column = 1
            FOR XML PATH('')
            ), 1, 2, '') AS 'included_columns'
FROM sysindexes AS i1
INNER JOIN sys.indexes AS i ON i.object_id = i1.id
    AND i.index_id = i1.indid
INNER JOIN sysobjects AS o ON o.id = i1.id
INNER JOIN sys.objects AS so ON so.object_id = o.id
    AND is_ms_shipped = 0
INNER JOIN sys.schemas AS s ON s.schema_id = so.schema_id
WHERE so.type = 'U'
    AND i1.indid < 255
    AND i1.STATUS & 64 = 0 --index with duplicates
    AND i1.STATUS & 8388608 = 0 --auto created index
    AND i1.STATUS & 16777216 = 0 --stats no recompute
    AND i.type_desc <> 'heap'
    AND so.NAME <> 'sysdiagrams'
ORDER BY table_name
    ,index_name;

Since your profile states that you are using .NET you could use Server Managed Objects (SMO) programmatically... otherwise any of the above answers are fantastic.


The above solution is elegant, but according to MS, INDEXKEY_PROPERTY is being deprecated. See: http://msdn.microsoft.com/en-us/library/ms186773.aspx


I have used the following query when I had this requirement...

SELECT 
    TableName = t.name,
    ColumnId = col.column_id, 
    ColumnName = col.name,
    DataType = ty.name,
    MaxSize = ty.max_length,
    IsNullable = CASE WHEN (col.is_nullable = 1) THEN 'Y' END,
    IsIdentity = CASE WHEN (col.is_identity = 1) THEN 'Y' END,
    IsPrimaryKey = CASE WHEN (ic.column_id = col.column_id) THEN 'Y' END,
    IsForeignKey = CASE WHEN (fkc.parent_column_id = col.column_id) THEN 'Y' END,
    IsDefault = CASE WHEN (dc.parent_column_id = col.column_id) THEN 'Y' END
FROM 
    sys.tables t
INNER JOIN 
     sys.columns col ON t.object_id = col.object_id 
LEFT JOIN
    sys.indexes ind ON t.object_id = ind.object_id 
LEFT JOIN 
     sys.index_columns ic ON ic.index_id=ind.index_id AND ic.object_id = col.object_id and ic.column_id = col.column_id
LEFT JOIN sys.foreign_key_columns fkc
                ON fkc.parent_object_id = col.object_id AND fkc.parent_column_id=col.column_id
LEFT JOIN sys.default_constraints dc
                ON dc.parent_object_id = col.object_id AND dc.parent_column_id=col.column_id
LEFT JOIN
     sys.types ty on ty.user_type_id = col.user_type_id

WHERE
    --t.name='<TABLENAME>'
    t.schema_id = 10    --SCHEMA ID
    AND ind.is_primary_key=1    
ORDER BY
    t.name, ColumnId

May I hazard another answer to this saturated question?

This is a liberal reworking of @marc_s answer, mixed with some stuff from @Tim Ford, with the goal of having a bit of a cleaner and simpler result set and final display and ordering for my current need.

SELECT 
    OBJECT_SCHEMA_NAME(t.[object_id],DB_ID()) AS [Schema],
    t.[name] AS [TableName], 
    ind.[name] AS [IndexName], 
    col.[name] AS [ColumnName],
    ic.column_id AS [ColumnId],
    ind.[type_desc] AS [IndexTypeDesc], 
    col.is_identity AS [IsIdentity],
    ind.[is_unique] AS [IsUnique],
    ind.[is_primary_key] AS [IsPrimaryKey],
    ic.[is_descending_key] AS [IsDescendingKey],
    ic.[is_included_column] AS [IsIncludedColumn]
FROM 
    sys.indexes ind 
INNER JOIN 
    sys.index_columns ic 
    ON ind.object_id = ic.object_id AND ind.index_id = ic.index_id 
INNER JOIN 
    sys.columns col 
    ON ic.object_id = col.object_id and ic.column_id = col.column_id 
INNER JOIN 
    sys.tables t 
    ON ind.object_id = t.object_id 
WHERE 
    t.is_ms_shipped = 0
    --ind.is_primary_key = 1 -- include or not pks, etc
    --AND ind.is_unique = 0
    --AND ind.is_unique_constraint = 0 
ORDER BY 
    [Schema],
    TableName, 
    IndexName,
    [ColumnId],
    ColumnName

You can use the sp_helpindex to view all the indexes of one table.

EXEC sys.sp_helpindex @objname = N'User' -- nvarchar(77)

And for all the indexes, you can traverse sys.objects to get all the indexes for each table.


--Short and sweet:

SELECT OBJECT_SCHEMA_NAME(T.[object_id],DB_ID()) AS [Schema],  
  T.[name] AS [table_name], I.[name] AS [index_name], AC.[name] AS [column_name],  
  I.[type_desc], I.[is_unique], I.[data_space_id], I.[ignore_dup_key], I.[is_primary_key], 
  I.[is_unique_constraint], I.[fill_factor],    I.[is_padded], I.[is_disabled], I.[is_hypothetical], 
  I.[allow_row_locks], I.[allow_page_locks], IC.[is_descending_key], IC.[is_included_column] 
FROM sys.[tables] AS T  
  INNER JOIN sys.[indexes] I ON T.[object_id] = I.[object_id]  
  INNER JOIN sys.[index_columns] IC ON I.[object_id] = IC.[object_id] 
  INNER JOIN sys.[all_columns] AC ON T.[object_id] = AC.[object_id] AND IC.[column_id] = AC.[column_id] 
WHERE T.[is_ms_shipped] = 0 AND I.[type_desc] <> 'HEAP' 
ORDER BY T.[name], I.[index_id], IC.[key_ordinal]   

Following gives what is similar as sp_helpindex tablename

select T.name as TableName, I.name as IndexName, AC.Name as ColumnName, I.type_desc as IndexType 
from sys.tables as T inner join sys.indexes as I on T.[object_id] = I.[object_id] 
   inner join sys.index_columns as IC on IC.[object_id] = I.[object_id] and IC.[index_id] = I.[index_id] 
   inner join sys.all_columns as AC on IC.[object_id] = AC.[object_id] and IC.[column_id] = AC.[column_id] 
order by T.name, I.name

Using SQL Server 2016, this gives a complete list of all indexes, with an included dump of each table so you can see how the tables relate. It also shows columns included in covering indexes:

select t.name TableName, i.name IdxName, c.name ColName
    , ic.index_column_id ColPosition
    , i.type_desc Type
    , case when i.is_primary_key = 1 then 'Yes' else '' end [Primary?]
    , case when i.is_unique = 1 then 'Yes' else '' end [Unique?]
    , case when ic.is_included_column = 0 then '' else 'Yes - Included' end [CoveredColumn?]
    , 'indexes >>>>' [*indexes*], i.*, 'index_columns >>>>' [*index_columns*]
    , ic.*, 'tables >>>>' [*tables*]
    , t.*, 'columns >>>>' [*columns*], c.*
from sys.index_columns ic
join sys.tables t on t.object_id = ic.object_id
join sys.columns c on c.object_id = t.object_id and c.column_id = ic.column_id
join sys.indexes i on i.object_id = t.object_id and i.index_id = ic.index_id
order by TableName, IdxName, ColPosition

First, please note that all the above queries may miss out or erroneously incorporate the INCLUDE columns of the indices. Also missing in some is the proper ordering and/or ASC/DESC option of the columns.

Modified the above query by jona. As an aside, in many of the database I use, I install my own CLR CONCATENATE aggregate function, so the code below depends on something like this being present. The above SQL statements reduce to a much more maintainable:

SELECT
  s.[name] AS [schema_name]
, t.[name] AS [table_name]
, i.[name] AS [index_name]
, dbo.Concatenate(CASE WHEN ic.[key_ordinal] > 0 AND ic.[is_descending_key] = 1 THEN c.[name] + ' DESC' WHEN key_ordinal > 0 THEN c.[name] ELSE NULL END,',',1) AS [columns]
, dbo.Concatenate(CASE WHEN ic.[is_included_column] = 1 THEN c.[name] ELSE NULL END,',',1) AS [includes]
FROM
  sys.tables t
INNER JOIN
  sys.schemas s ON t.[schema_id] = s.[schema_id]
INNER JOIN
  sys.indexes i ON i.[object_id] = t.[object_id]
INNER JOIN
  sys.index_columns ic ON ic.[object_id] = t.[object_id] AND ic.index_id = i.index_id
INNER JOIN
  sys.columns c ON c.[object_id] = t.[object_id] AND ic.column_id = c.column_id
GROUP BY
  s.[name]
, t.[name]
, i.[name]
ORDER BY
  s.[name]
, t.[name]
, i.[name]

There are lots of concatenation aggregates out there if your environment allows CLR-based functions added to it.


based on Tim Ford code, this is the right answer:

  select tab.[name]  as [table_name],
         idx.[name]  as [index_name],
         allc.[name] as [column_name],
         idx.[type_desc],
         idx.[is_unique],
         idx.[data_space_id],
         idx.[ignore_dup_key],
         idx.[is_primary_key],
         idx.[is_unique_constraint],
         idx.[fill_factor],
         idx.[is_padded],
         idx.[is_disabled],
         idx.[is_hypothetical],
         idx.[allow_row_locks],
         idx.[allow_page_locks],
         idxc.[is_descending_key],
         idxc.[is_included_column],
         idxc.[index_column_id]

     from sys.[tables] as tab

    inner join sys.[indexes]       idx  on tab.[object_id] =  idx.[object_id]
    inner join sys.[index_columns] idxc on idx.[object_id] = idxc.[object_id] and  idx.[index_id]  = idxc.[index_id]
    inner join sys.[all_columns]   allc on tab.[object_id] = allc.[object_id] and idxc.[column_id] = allc.[column_id]

    where tab.[name] Like '%table_name%'
      and idx.[name] Like '%index_name%'
    order by tab.[name], idx.[index_id], idxc.[index_column_id]

The correct One is here (All the above posts will give Cartesian product result when we have more then one index on a table)

select s.name, t.name, i.name, c.name from sys.tables t
inner join sys.schemas s on t.schema_id = s.schema_id
inner join sys.indexes i on i.object_id = t.object_id
inner join sys.index_columns ic on ic.object_id = t.object_id 
                                  AND i.index_id = ic.index_id
inner join sys.columns c on c.object_id = t.object_id 
                                  and  ic.column_id = c.column_id
where i.index_id > 0    
 and i.type in (1, 2) -- clustered & nonclustered only
 and i.is_primary_key = 0 -- do not include PK indexes
 and i.is_unique_constraint = 0 -- do not include UQ
 and i.is_disabled = 0
 and i.is_hypothetical = 0
 and ic.key_ordinal > 0
 AND  t.name = 'DimCustomer'
order by ic.key_ordinal

None of the above did the job for me, but this does:

-- KDF9's concise index list for SQL Server 2005+  (see below for 2000)
--   includes schemas and primary keys, in easy to read format
--   with unique, clustered, and all ascending/descendings in a single column
-- Needs simple manual add or delete to change maximum number of key columns
--   but is easy to understand and modify, with no UDFs or complex logic
--
SELECT
  schema_name(schema_id) as SchemaName, OBJECT_NAME(si.object_id) as TableName, si.name as IndexName,
  (CASE is_primary_key WHEN 1 THEN 'PK' ELSE '' END) as PK,
  (CASE is_unique WHEN 1 THEN '1' ELSE '0' END)+' '+
  (CASE si.type WHEN 1 THEN 'C' WHEN 3 THEN 'X' ELSE 'B' END)+' '+  -- B=basic, C=Clustered, X=XML
  (CASE INDEXKEY_PROPERTY(si.object_id,index_id,1,'IsDescending') WHEN 0 THEN 'A' WHEN 1 THEN 'D' ELSE '' END)+
  (CASE INDEXKEY_PROPERTY(si.object_id,index_id,2,'IsDescending') WHEN 0 THEN 'A' WHEN 1 THEN 'D' ELSE '' END)+
  (CASE INDEXKEY_PROPERTY(si.object_id,index_id,3,'IsDescending') WHEN 0 THEN 'A' WHEN 1 THEN 'D' ELSE '' END)+
  (CASE INDEXKEY_PROPERTY(si.object_id,index_id,4,'IsDescending') WHEN 0 THEN 'A' WHEN 1 THEN 'D' ELSE '' END)+
  (CASE INDEXKEY_PROPERTY(si.object_id,index_id,5,'IsDescending') WHEN 0 THEN 'A' WHEN 1 THEN 'D' ELSE '' END)+
  (CASE INDEXKEY_PROPERTY(si.object_id,index_id,6,'IsDescending') WHEN 0 THEN 'A' WHEN 1 THEN 'D' ELSE '' END)+
  '' as 'Type',
  INDEX_COL(schema_name(schema_id)+'.'+OBJECT_NAME(si.object_id),index_id,1) as Key1,
  INDEX_COL(schema_name(schema_id)+'.'+OBJECT_NAME(si.object_id),index_id,2) as Key2,
  INDEX_COL(schema_name(schema_id)+'.'+OBJECT_NAME(si.object_id),index_id,3) as Key3,
  INDEX_COL(schema_name(schema_id)+'.'+OBJECT_NAME(si.object_id),index_id,4) as Key4,
  INDEX_COL(schema_name(schema_id)+'.'+OBJECT_NAME(si.object_id),index_id,5) as Key5,
  INDEX_COL(schema_name(schema_id)+'.'+OBJECT_NAME(si.object_id),index_id,6) as Key6
FROM sys.indexes as si
LEFT JOIN sys.objects as so on so.object_id=si.object_id
WHERE index_id>0 -- omit the default heap
  and OBJECTPROPERTY(si.object_id,'IsMsShipped')=0 -- omit system tables
  and not (schema_name(schema_id)='dbo' and OBJECT_NAME(si.object_id)='sysdiagrams') -- omit sysdiagrams
ORDER BY SchemaName,TableName,IndexName

-------------------------------------------------------------------
-- or to generate creation scripts put a simple wrapper around that
SELECT SchemaName, TableName, IndexName,
  (CASE pk
    WHEN 'PK' THEN 'ALTER '+
     'TABLE '+SchemaName+'.'+TableName+' ADD CONSTRAINT '+IndexName+' PRIMARY KEY'+
     (CASE substring(Type,3,1) WHEN 'C' THEN ' CLUSTERED' ELSE '' END)
    ELSE 'CREATE '+
     (CASE substring(Type,1,1) WHEN '1' THEN 'UNIQUE ' ELSE '' END)+
     (CASE substring(Type,3,1) WHEN 'C' THEN 'CLUSTERED ' ELSE '' END)+
     'INDEX '+IndexName+' ON '+SchemaName+'.'+TableName
    END)+
  ' ('+
    (CASE WHEN Key1 is null THEN '' ELSE      Key1+(CASE substring(Type,4+1,1) WHEN 'D' THEN ' DESC' ELSE '' END) END)+
    (CASE WHEN Key2 is null THEN '' ELSE ', '+Key2+(CASE substring(Type,4+2,1) WHEN 'D' THEN ' DESC' ELSE '' END) END)+
    (CASE WHEN Key3 is null THEN '' ELSE ', '+Key3+(CASE substring(Type,4+3,1) WHEN 'D' THEN ' DESC' ELSE '' END) END)+
    (CASE WHEN Key4 is null THEN '' ELSE ', '+Key4+(CASE substring(Type,4+4,1) WHEN 'D' THEN ' DESC' ELSE '' END) END)+
    (CASE WHEN Key5 is null THEN '' ELSE ', '+Key5+(CASE substring(Type,4+5,1) WHEN 'D' THEN ' DESC' ELSE '' END) END)+
    (CASE WHEN Key6 is null THEN '' ELSE ', '+Key6+(CASE substring(Type,4+6,1) WHEN 'D' THEN ' DESC' ELSE '' END) END)+
    ')' as CreateIndex
FROM (
  ...
  ...listing SQL same as above minus the ORDER BY...
  ...
  ) as indexes
ORDER BY SchemaName,TableName,IndexName

----------------------------------------------------------
-- For SQL Server 2000 the following should work
--   change table names to sysindexes and sysobjects (no dots)
--   change object_id => id, index_id => indid,
--   change is_primary_key => (select count(constid) from sysconstraints as sc where sc.id=si.id and sc.status&15=1)
--   change is_unique => INDEXPROPERTY(si.id,si.name,'IsUnique')
--   change si.type => INDEXPROPERTY(si.id,si.name,'IsClustered')
--   remove all references to schemas including schema name qualifiers, and the XML type
--   add select where indid<255 and si.status&64=0 (to omit the text/image index and autostats)

If your names include spaces, add square brackets around them in the creation scripts.

When the last Key column is all nulls, you know that none are missing.

Filtering out primary keys etc as in the original request is trivial.

NOTE: Take care with this solution as it doesn't distinguish indexed and included columns.


This is mine, works on one default schema but it can be easily improved It gives 3 columnns with SQLQueries - Create / Drop / Rebuild (no reorganizing)

Query:

SELECT
'CREATE ' + 
CASE WHEN is_primary_key=1 THEN 'CLUSTERED' 
WHEN is_primary_key=0 and is_unique_constraint=0 THEN 'NONCLUSTERED'
WHEN is_primary_key=0 and is_unique_constraint=1 THEN 'UNIQUE' END  
+ ' INDEX ' +
QUOTENAME(i.name) + ' ON ' +
QUOTENAME(t.name) + ' ( '  + 
STUFF(REPLACE(REPLACE((
        SELECT QUOTENAME(c.name) + CASE WHEN ic.is_descending_key = 1 THEN ' DESC' ELSE '' END AS [data()]
        FROM sys.index_columns AS ic
        INNER JOIN sys.columns AS c ON ic.object_id = c.object_id AND ic.column_id = c.column_id
        WHERE ic.object_id = i.object_id AND ic.index_id = i.index_id AND ic.is_included_column = 0
        ORDER BY ic.key_ordinal
        FOR XML PATH
    ), '<row>', ', '), '</row>', ''), 1, 2, '') + ' ) '  -- keycols
+ COALESCE(' INCLUDE ( ' +
    STUFF(REPLACE(REPLACE((
        SELECT QUOTENAME(c.name) AS [data()]
        FROM sys.index_columns AS ic
        INNER JOIN sys.columns AS c ON ic.object_id = c.object_id AND ic.column_id = c.column_id
        WHERE ic.object_id = i.object_id AND ic.index_id = i.index_id AND ic.is_included_column = 1
        ORDER BY ic.index_column_id
        FOR XML PATH
    ), '<row>', ', '), '</row>', ''), 1, 2, '') + ' ) ',    -- included cols
    '') as [Create],
'DROP INDEX ' + QUOTENAME(i.name) + ' ON ' + QUOTENAME(t.name) as [Drop],
'ALTER INDEX ' + QUOTENAME(i.name)  + ' ON ' +QUOTENAME(t.name) + ' REBUILD ' as [Rebuild]
FROM sys.tables AS t
INNER JOIN sys.indexes AS i ON t.object_id = i.object_id
LEFT JOIN sys.dm_db_index_usage_stats AS u ON i.object_id = u.object_id AND i.index_id = u.index_id
WHERE t.is_ms_shipped = 0
AND i.type <> 0
order by QUOTENAME(t.name), is_primary_key desc

Output

Create                                                                                                      Drop                                    Rebuild
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
CREATE CLUSTERED INDEX [PK_Table1] ON [Table1] ( [Tab1_ID] )                                                DROP INDEX [PK_Table1] ON [Table1]      ALTER INDEX [PK_Table1] ON [Table1] REBUILD 
CREATE UNIQUE INDEX [IX_Table1_Name] ON [Table1] ( [Tab1_Name] )                                            DROP INDEX [IX_Table1_Name] ON [Table1] ALTER INDEX [IX_Table1_Name] ON [Table1] REBUILD 
CREATE NONCLUSTERED INDEX [IX_Table2] ON [Table2] ( [Tab2_Name], [Tab2_City] )  INCLUDE ( [Tab2_PhoneNo] )  DROP INDEX [IX_Table2] ON [Table2]      ALTER INDEX [IX_Table2] ON [Table2] REBUILD

Examples related to sql-server

Passing multiple values for same variable in stored procedure SQL permissions for roles Count the Number of Tables in a SQL Server Database Visual Studio 2017 does not have Business Intelligence Integration Services/Projects ALTER TABLE DROP COLUMN failed because one or more objects access this column Create Local SQL Server database How to create temp table using Create statement in SQL Server? SQL Query Where Date = Today Minus 7 Days How do I pass a list as a parameter in a stored procedure? SQL Server date format yyyymmdd

Examples related to tsql

Passing multiple values for same variable in stored procedure Count the Number of Tables in a SQL Server Database Change Date Format(DD/MM/YYYY) in SQL SELECT Statement Stored procedure with default parameters Format number as percent in MS SQL Server EXEC sp_executesql with multiple parameters SQL Server after update trigger How to compare datetime with only date in SQL Server Text was truncated or one or more characters had no match in the target code page including the primary key in an unpivot Printing integer variable and string on same line in SQL

Examples related to indexing

numpy array TypeError: only integer scalar arrays can be converted to a scalar index How to print a specific row of a pandas DataFrame? What does 'index 0 is out of bounds for axis 0 with size 0' mean? How does String.Index work in Swift Pandas KeyError: value not in index Update row values where certain condition is met in pandas Pandas split DataFrame by column value Rebuild all indexes in a Database How are iloc and loc different? pandas loc vs. iloc vs. at vs. iat?

Examples related to reverse-engineering

Sniffing/logging your own Android Bluetooth traffic What is the iBeacon Bluetooth Profile JNZ & CMP Assembly Instructions Best practice for storing and protecting private API keys in applications How to avoid reverse engineering of an APK file? Generate UML Class Diagram from Java Project How do you extract classes' source code from a dll file? Generate ER Diagram from existing MySQL database, created for CakePHP decompiling DEX into Java sourcecode List of all index & index columns in SQL Server DB