[c#] FileSystemWatcher Changed event is raised twice

I have an application where I am looking for a text file and if there are any changes made to the file I am using the OnChanged eventhandler to handle the event. I am using the NotifyFilters.LastWriteTime but still the event is getting fired twice. Here is the code.

public void Initialize()
{
   FileSystemWatcher _fileWatcher = new FileSystemWatcher();
  _fileWatcher.Path = "C:\\Folder";
  _fileWatcher.NotifyFilter = NotifyFilters.LastWrite;
  _fileWatcher.Filter = "Version.txt";
  _fileWatcher.Changed += new FileSystemEventHandler(OnChanged);
  _fileWatcher.EnableRaisingEvents = true;
}

private void OnChanged(object source, FileSystemEventArgs e)
{
   .......
}

In my case the OnChanged is called twice, when I change the text file version.txt and save it.

This question is related to c# filesystemwatcher

The answer is


if you register to the OnChanged event, then by deleting the monitored file before changing it might work, as long as you only need to monitor the OnChange event..


One possible 'hack' would be to throttle the events using Reactive Extensions for example:

var watcher = new FileSystemWatcher("./");

Observable.FromEventPattern<FileSystemEventArgs>(watcher, "Changed")
            .Throttle(new TimeSpan(500000))
            .Subscribe(HandleChangeEvent);

watcher.EnableRaisingEvents = true;

In this case I'm throttling to 50ms, on my system that was enough, but higher values should be safer. (And like I said, it's still a 'hack').


I know this is an old issue, but had the same problem and none of the above solution really did the trick for the problem I was facing. I have created a dictionary which maps the file name with the LastWriteTime. So if the file is not in the dictionary will go ahead with the process other wise check to see when was the last modified time and if is different from what it is in the dictionary run the code.

    Dictionary<string, DateTime> dateTimeDictionary = new Dictionary<string, DateTime>(); 

        private void OnChanged(object source, FileSystemEventArgs e)
            {
                if (!dateTimeDictionary.ContainsKey(e.FullPath) || (dateTimeDictionary.ContainsKey(e.FullPath) && System.IO.File.GetLastWriteTime(e.FullPath) != dateTimeDictionary[e.FullPath]))
                {
                    dateTimeDictionary[e.FullPath] = System.IO.File.GetLastWriteTime(e.FullPath);

                    //your code here
                }
            }

Event if not asked, it is a shame there are no ready solution samples for F#. To fix this here is my recipe, just because I can and F# is a wonderful .NET language.

Duplicated events are filtered out using FSharp.Control.Reactive package, which is just a F# wrapper for reactive extensions. All that can be targeted to full framework or netstandard2.0:

let createWatcher path filter () =
    new FileSystemWatcher(
        Path = path,
        Filter = filter,
        EnableRaisingEvents = true,
        SynchronizingObject = null // not needed for console applications
    )

let createSources (fsWatcher: FileSystemWatcher) =
    // use here needed events only. 
    // convert `Error` and `Renamed` events to be merded
    [| fsWatcher.Changed :> IObservable<_>
       fsWatcher.Deleted :> IObservable<_>
       fsWatcher.Created :> IObservable<_>
       //fsWatcher.Renamed |> Observable.map renamedToNeeded
       //fsWatcher.Error   |> Observable.map errorToNeeded
    |] |> Observable.mergeArray

let handle (e: FileSystemEventArgs) =
    printfn "handle %A event '%s' '%s' " e.ChangeType e.Name e.FullPath 

let watch path filter throttleTime =
    // disposes watcher if observer subscription is disposed
    Observable.using (createWatcher path filter) createSources
    // filter out multiple equal events
    |> Observable.distinctUntilChanged
    // filter out multiple Changed
    |> Observable.throttle throttleTime
    |> Observable.subscribe handle

[<EntryPoint>]
let main _args =
    let path = @"C:\Temp\WatchDir"
    let filter = "*.zip"
    let throttleTime = TimeSpan.FromSeconds 10.
    use _subscription = watch path filter throttleTime
    System.Console.ReadKey() |> ignore
    0 // return an integer exit code

I was able to do this by added a function that checks for duplicates in an buffer array.

Then perform the action after the array has not been modified for X time using a timer: - Reset timer every time something is written to the buffer - Perform action on tick

This also catches another duplication type. If you modify a file inside a folder, the folder also throws a Change event.

Function is_duplicate(str1 As String) As Boolean
    If lb_actions_list.Items.Count = 0 Then
        Return False
    Else
        Dim compStr As String = lb_actions_list.Items(lb_actions_list.Items.Count - 1).ToString
        compStr = compStr.Substring(compStr.IndexOf("-") + 1).Trim

        If compStr <> str1 AndAlso compStr.parentDir <> str1 & "\" Then
            Return False
        Else
            Return True
        End If
    End If
End Function

Public Module extentions
<Extension()>
Public Function parentDir(ByVal aString As String) As String
    Return aString.Substring(0, CInt(InStrRev(aString, "\", aString.Length - 1)))
End Function
End Module

Here is a new solution you can try. Works well for me. In the event handler for the changed event programmatically remove the handler from the designer output a message if desired then programmatically add the handler back. example:

public void fileSystemWatcher1_Changed( object sender, System.IO.FileSystemEventArgs e )
    {            
        fileSystemWatcher1.Changed -= new System.IO.FileSystemEventHandler( fileSystemWatcher1_Changed );
        MessageBox.Show( "File has been uploaded to destination", "Success!" );
        fileSystemWatcher1.Changed += new System.IO.FileSystemEventHandler( fileSystemWatcher1_Changed );
    }

In my case need to get the last line of a text file that is inserted by other application, as soon as insertion is done. Here is my solution. When the first event is raised, i disable the watcher from raising others, then i call the timer TimeElapsedEvent because when my handle function OnChanged is called i need the size of the text file, but the size at that time is not the actual size, it is the size of the file imediatelly before the insertion. So i wait for a while to proceed with the right file size.

private FileSystemWatcher watcher = new FileSystemWatcher();
...
watcher.Path = "E:\\data";
watcher.NotifyFilter = NotifyFilters.LastWrite ;
watcher.Filter = "data.txt";
watcher.Changed += new FileSystemEventHandler(OnChanged);
watcher.EnableRaisingEvents = true;

...

private void OnChanged(object source, FileSystemEventArgs e)
   {
    System.Timers.Timer t = new System.Timers.Timer();
    try
    {
        watcher.Changed -= new FileSystemEventHandler(OnChanged);
        watcher.EnableRaisingEvents = false;

        t.Interval = 500;
        t.Elapsed += (sender, args) => t_Elapsed(sender, e);
        t.Start();
    }
    catch(Exception ex) {
        ;
    }
}

private void t_Elapsed(object sender, FileSystemEventArgs e) 
   {
    ((System.Timers.Timer)sender).Stop();
       //.. Do you stuff HERE ..
     watcher.Changed += new FileSystemEventHandler(OnChanged);
     watcher.EnableRaisingEvents = true;
}

Well. This question is old, i was here today...but in the end i used an way simpler approach.

  1. Boolean - if something is being done, true. When it ends, false.
  2. Before processing , add it to a HashSet. This way i won't be repeating elements.
  3. Every 30 minutes the elapsed event of an timer runs, and if there's no job being executed it will clear the list (just hashset = new hashset).

I hope i contributed with something =)


I am afraid that this is a well-known bug/feature of the FileSystemWatcher class. This is from the documentation of the class:

You may notice in certain situations that a single creation event generates multiple Created events that are handled by your component. For example, if you use a FileSystemWatcher component to monitor the creation of new files in a directory, and then test it by using Notepad to create a file, you may see two Created events generated even though only a single file was created. This is because Notepad performs multiple file system actions during the writing process. Notepad writes to the disk in batches that create the content of the file and then the file attributes. Other applications may perform in the same manner. Because FileSystemWatcher monitors the operating system activities, all events that these applications fire will be picked up.

Now this bit of text is about the Created event, but the same thing applies to other file events as well. In some applications you might be able to get around this by using the NotifyFilter property, but my experience is says that sometimes you have to do some manual duplicate filtering (hacks) as well.

A while ago I bookedmarked a page with a few FileSystemWatcher tips. You might want to check it out.


I simple add a dupe check as follows:

 private void OnChanged(object source, FileSystemEventArgs e)
    {
        string sTabName = Path.GetFileNameWithoutExtension(e.Name);
        string sLastLine = ReadLastLine(e.FullPath);
        if(sLastLine != _dupeCheck)
        {
            TabPage tp = tcLogs.TabPages[sTabName];
            TextBox tbLog = (TextBox)tp.Controls[0] as TextBox;

            tbLog.Invoke(new Action(() => tbLog.AppendText(sLastLine + Environment.NewLine)));
            tbLog.Invoke(new Action(() => tbLog.SelectionStart = tbLog.Text.Length));
            tbLog.Invoke(new Action(() => tbLog.ScrollToCaret()));
            _dupeCheck = sLastLine;
        }
    }

    public static String ReadLastLine(string path)
    {
        return ReadLastLine(path, Encoding.Default, "\n");
    }

    public static String ReadLastLine(string path, Encoding encoding, string newline)
    {
        int charsize = encoding.GetByteCount("\n");
        byte[] buffer = encoding.GetBytes(newline);
        using (FileStream stream = new FileStream(path, FileMode.Open, FileAccess.Read, FileShare.ReadWrite))
        {
            long endpos = stream.Length / charsize;
            for (long pos = charsize; pos < endpos; pos += charsize)
            {
                stream.Seek(-pos, SeekOrigin.End);
                stream.Read(buffer, 0, buffer.Length);
                if (encoding.GetString(buffer) == newline)
                {
                    buffer = new byte[stream.Length - stream.Position];
                    stream.Read(buffer, 0, buffer.Length);
                    return encoding.GetString(buffer);
                }
            }
        }
        return null;
    }

    [DllImport("user32.dll", CharSet = CharSet.Auto)]
    private static extern int SendMessage(IntPtr hWnd, int wMsg, IntPtr wParam, IntPtr lParam);

    private const int WM_VSCROLL = 0x115;
    private const int SB_BOTTOM = 7;

    /// <summary>
    /// Scrolls the vertical scroll bar of a multi-line text box to the bottom.
    /// </summary>
    /// <param name="tb">The text box to scroll</param>
    public static void ScrollToBottom(TextBox tb)
    {
        SendMessage(tb.Handle, WM_VSCROLL, (IntPtr)SB_BOTTOM, IntPtr.Zero);
    }

This code worked for me.

        private void OnChanged(object source, FileSystemEventArgs e)
    {

        string fullFilePath = e.FullPath.ToString();
        string fullURL = buildTheUrlFromStudyXML(fullFilePath);

        System.Diagnostics.Process.Start("iexplore", fullURL);

        Timer timer = new Timer();
        ((FileSystemWatcher)source).Changed -= new FileSystemEventHandler(OnChanged);
        timer.Interval = 1000;
        timer.Elapsed += new ElapsedEventHandler(t_Elapsed);
        timer.Start();
    }

    private void t_Elapsed(object sender, ElapsedEventArgs e)
    {
        ((Timer)sender).Stop();
        theWatcher.Changed += new FileSystemEventHandler(OnChanged);
    }

My scenario is that I have a virtual machine with a Linux server in it. I am developing files on the Windows host. When I change something in a folder on the host I want all the changes to be uploaded, synced onto the virtual server via Ftp. This is how I do eliminate the duplicate change event when I write to a file ( which flags the folder containing the file to be modified as well ) :

private Hashtable fileWriteTime = new Hashtable();

private void fsw_sync_Changed(object source, FileSystemEventArgs e)
{
    string path = e.FullPath.ToString();
    string currentLastWriteTime = File.GetLastWriteTime( e.FullPath ).ToString();

    // if there is no path info stored yet
    // or stored path has different time of write then the one now is inspected
    if ( !fileWriteTime.ContainsKey(path) ||
         fileWriteTime[path].ToString() != currentLastWriteTime
    )
    {
        //then we do the main thing
        log( "A CHANGE has occured with " + path );

        //lastly we update the last write time in the hashtable
        fileWriteTime[path] = currentLastWriteTime;
    }
}

Mainly I create a hashtable to store file write time information. Then if the hashtable has the filepath that is modified and it's time value is the same as the currently notified file's change then I know it is the duplicate of the event and ignore it.


Code with customizable disabling of the time interval of blocking the second watcher raising and without blocking over watchers if they exist:

    namespace Watcher
    {
        class Static
        {
            public static DateTime lastDomain { get; set; }
            public static string lastDomainStr { get; set; }
        }
        public partial class Form1 : Form
       {
            int minMs = 20;//time for blocking in ms
            public Form1()
            {
                InitializeComponent();
                Static.lastDomain = new DateTime(1970, 1, 1, 0, 0, 0);
                Static.lastDomainStr = "";  
                Start();
            }
             private void Start()//Start watcher
             {
                //...
                domain.Changed += new FileSystemEventHandler(Domain);
                domain.EnableRaisingEvents = true;
                //...you second unblocked watchers
                second.Changed += new FileSystemEventHandler(Second);
                second.EnableRaisingEvents = true;
             }
             private void Domain(object source, FileSystemEventArgs e)
             {
                if (now.Subtract(Static.lastDomain).TotalMilliseconds < minMs && Static.lastDomainStr == e.FullPath)return;
                 //...you code here
                 /* if you need form access
                 this.Invoke(new MethodInvoker(() =>{ textBox1.Text = "...";}));
                 */
                 Static.lastDomain = DateTime.Now;
                 Static.lastDomainStr = e.FullPath;
             }
             private void Second(object source, FileSystemEventArgs e)
             {
                  //...Second rised
             }
       }
    }

I spent some significant amount of time using the FileSystemWatcher, and some of the approaches here will not work. I really liked the disabling events approach, but unfortunately, it doesn't work if there is >1 file being dropped, second file will be missed most if not all times. So I use the following approach:

private void EventCallback(object sender, FileSystemEventArgs e)
{
    var fileName = e.FullPath;

    if (!File.Exists(fileName))
    {
        // We've dealt with the file, this is just supressing further events.
        return;
    }

    // File exists, so move it to a working directory. 
    File.Move(fileName, [working directory]);

    // Kick-off whatever processing is required.
}

Alot of these answers are shocking, really. Heres some code from my XanderUI Control library that fixes this.

private void OnChanged(object sender, FilesystemEventArgs e)
{
    if (FSWatcher.IncludeSubdirectories == true)
    {
        if (File.Exists(e.FullPath)) { DO YOUR FILE CHANGE STUFF HERE... }
    }
    else DO YOUR DIRECTORY CHANGE STUFF HERE...
}

I have a very quick and simple workaround here, it does work for me, and no matter the event would be triggered once or twice or more times occasionally, check it out:

private int fireCount = 0;
private void inputFileWatcher_Changed(object sender, FileSystemEventArgs e)
    {
       fireCount++;
       if (fireCount == 1)
        {
            MessageBox.Show("Fired only once!!");
            dowork();
        }
        else
        {
            fireCount = 0;
        }
    }
}

Been searching for answer but I came up with a dirty solution. Since my event fires twice, second action does nothing.

       $count = 1
       $action = { 
            if($count -eq 1){                  
                #DO SOMETHING
                $count = 2 
            }else{
                $count = 1
            }
        }  

I've "fixed" that problem using the following strategy in my delegate:

// fsw_ is the FileSystemWatcher instance used by my application.

private void OnDirectoryChanged(...)
{
   try
   {
      fsw_.EnableRaisingEvents = false;

      /* do my stuff once asynchronously */
   }

   finally
   {
      fsw_.EnableRaisingEvents = true;
   }
}

Make it simple define one global variable var1 = true.

Private Sub FileWatchman_Changed(ByVal sender As System.Object, ByVal e As System.IO.FileSystemEventArgs) Handles FileWatchman.Changed
   If var1 = true 
       your logic goes here
       var1 = false
   Else
       var1 = true 
   End If
End Sub

FileReadTime = DateTime.Now;

private void File_Changed(object sender, FileSystemEventArgs e)
{            
    var lastWriteTime = File.GetLastWriteTime(e.FullPath);
    if (lastWriteTime.Subtract(FileReadTime).Ticks > 0)
    {
        // code
        FileReadTime = DateTime.Now;
    }
}

Here's my approach :

// Consider having a List<String> named _changedFiles

private void OnChanged(object source, FileSystemEventArgs e)
{
    lock (_changedFiles)
    {
        if (_changedFiles.Contains(e.FullPath))
        {
            return;
        }
        _changedFiles.Add(e.FullPath);
    }

    // do your stuff

    System.Timers.Timer timer = new Timer(1000) { AutoReset = false };
    timer.Elapsed += (timerElapsedSender, timerElapsedArgs) =>
    {
        lock (_changedFiles)
        {
            _changedFiles.Remove(e.FullPath);
        }
    };
   timer.Start();
}

This is the solution I used to solve this issue on a project where I was sending the file as attachment in a mail. It will easily avoid the twice fired event even with a smaller timer interval but in my case 1000 was alright since I was happier with missing few changes than with flooding the mailbox with > 1 message per second. At least it works just fine in case several files are changed at the exact same time.

Another solution I've thought of would be to replace the list with a dictionary mapping files to their respective MD5, so you wouldn't have to choose an arbitrary interval since you wouldn't have to delete the entry but update its value, and cancel your stuff if it hasn't changed. It has the downside of having a Dictionary growing in memory as files are monitored and eating more and more memory, but I've read somewhere that the amount of files monitored depends on the FSW's internal buffer, so maybe not that critical. Dunno how MD5 computing time would affect your code's performances either, careful =\


The main reason was first event's last access time was current time(file write or changed time). then second event was file's original last access time. I solve under code.

        var lastRead = DateTime.MinValue;

        Watcher = new FileSystemWatcher(...)
        {
            NotifyFilter = NotifyFilters.FileName | NotifyFilters.LastWrite,
            Filter = "*.dll",
            IncludeSubdirectories = false,
        };
        Watcher.Changed += (senderObject, ea) =>
        {
            var now = DateTime.Now;
            var lastWriteTime = File.GetLastWriteTime(ea.FullPath);

            if (now == lastWriteTime)
            {
                return;
            }

            if (lastWriteTime != lastRead)
            {
                // do something...
                lastRead = lastWriteTime;
            }
        };

        Watcher.EnableRaisingEvents = true;

After struggling with the Changed event firing twice as well, I found that the easiest solution is to compare the byte[] contents of the file before and after the event fires, then only execute your code if the contents of the file actually changed.

The basic problem is this same event is fired for each specific type of change to a file, besides just content changes. Just saving a change to the file contents fires the event multiple times (due to a change in the file date, attributes, or whatever else it is detecting).

The FileSystemWatcher class SHOULD be providing a lot more events for all the various changes a file or directory can experience. This is an annoying oversight by the .NET team. It's absurd that a single action within the system or by a user would result in firing a single event in .NET more than once. This is an incredibly dumb design.

And before one of you apologists makes up some absolutely ridiculous excuses why WE are all capable of writing custom code to prevent an event from firing multiple times but the developers at Microsoft are not, save your time. This has become the worst part of the StackOverflow experience: all the butt-kissing apologists that refuse to admit that there are design flaws in software all around us that we use every day that could be corrected if the publisher would simply invest the time and expense.


You could try to open it for write, and if successful then you could assume the other application is done with the file.

private void OnChanged(object source, FileSystemEventArgs e)
{
    try
    {
        using (var fs = File.OpenWrite(e.FullPath))
        {
        }
        //do your stuff
    }
    catch (Exception)
    {
        //no write access, other app not done
    }
}

Just opening it for write appears not to raise the changed event. So it should be safe.


Any duplicated OnChanged events from the FileSystemWatcher can be detected and discarded by checking the File.GetLastWriteTime timestamp on the file in question. Like so:

DateTime lastRead = DateTime.MinValue;

void OnChanged(object source, FileSystemEventArgs a)
{
    DateTime lastWriteTime = File.GetLastWriteTime(uri);
    if (lastWriteTime != lastRead)
    {
        doStuff();
        lastRead = lastWriteTime;
    }
    // else discard the (duplicated) OnChanged event
}

Here is another approach. Instead of propagating the first event of a quick succession of events and suppressing all that follow, now all are suppressed except from the last one. I think that the scenarios that can benefit from this approach are more common.

To make this happen we must use a sliding delay. Every incoming event cancels the timer that would fire the previous event, and restarts the timer. This opens the possibility that a never-ending series of events will delay the propagation forever. To keep things simple, there is no provision for this abnormal case in the extension methods below.

public static class FileSystemWatcherExtensions
{
    public static IDisposable OnAnyEvent(this FileSystemWatcher source,
        WatcherChangeTypes changeTypes, FileSystemEventHandler handler, int delay)
    {
        var cancellations = new Dictionary<string, CancellationTokenSource>(
            StringComparer.OrdinalIgnoreCase);
        var locker = new object();
        if (changeTypes.HasFlag(WatcherChangeTypes.Created))
            source.Created += FileSystemWatcher_Event;
        if (changeTypes.HasFlag(WatcherChangeTypes.Deleted))
            source.Deleted += FileSystemWatcher_Event;
        if (changeTypes.HasFlag(WatcherChangeTypes.Changed))
            source.Changed += FileSystemWatcher_Event;
        if (changeTypes.HasFlag(WatcherChangeTypes.Renamed))
            source.Renamed += FileSystemWatcher_Event;
        return new Disposable(() =>
        {
            source.Created -= FileSystemWatcher_Event;
            source.Deleted -= FileSystemWatcher_Event;
            source.Changed -= FileSystemWatcher_Event;
            source.Renamed -= FileSystemWatcher_Event;
        });

        async void FileSystemWatcher_Event(object sender, FileSystemEventArgs e)
        {
            var key = e.FullPath;
            var cts = new CancellationTokenSource();
            lock (locker)
            {
                if (cancellations.TryGetValue(key, out var existing))
                {
                    existing.Cancel();
                }
                cancellations[key] = cts;
            }
            try
            {
                await Task.Delay(delay, cts.Token);
                // Omitting ConfigureAwait(false) is intentional here.
                // Continuing in the captured context is desirable.
            }
            catch (TaskCanceledException)
            {
                return;
            }
            lock (locker)
            {
                if (cancellations.TryGetValue(key, out var existing)
                    && existing == cts)
                {
                    cancellations.Remove(key);
                }
            }
            cts.Dispose();
            handler(sender, e);
        }
    }

    public static IDisposable OnAllEvents(this FileSystemWatcher source,
        FileSystemEventHandler handler, int delay)
        => OnAnyEvent(source, WatcherChangeTypes.All, handler, delay);

    public static IDisposable OnCreated(this FileSystemWatcher source,
        FileSystemEventHandler handler, int delay)
        => OnAnyEvent(source, WatcherChangeTypes.Created, handler, delay);

    public static IDisposable OnDeleted(this FileSystemWatcher source,
        FileSystemEventHandler handler, int delay)
        => OnAnyEvent(source, WatcherChangeTypes.Deleted, handler, delay);

    public static IDisposable OnChanged(this FileSystemWatcher source,
        FileSystemEventHandler handler, int delay)
        => OnAnyEvent(source, WatcherChangeTypes.Changed, handler, delay);

    public static IDisposable OnRenamed(this FileSystemWatcher source,
        FileSystemEventHandler handler, int delay)
        => OnAnyEvent(source, WatcherChangeTypes.Renamed, handler, delay);

    private struct Disposable : IDisposable
    {
        private readonly Action _action;
        internal Disposable(Action action) => _action = action;
        public void Dispose() => _action?.Invoke();
    }
}

Usage example:

myWatcher.OnAnyEvent(WatcherChangeTypes.Created | WatcherChangeTypes.Changed,
    MyFileSystemWatcher_Event, 100);

This line combines the subscription to two events, the Created and the Changed. So it is roughly equivalent to these:

myWatcher.Created += MyFileSystemWatcher_Event;
myWatcher.Changed += MyFileSystemWatcher_Event;

The difference is that the two events are regarded as a single type of event, and in case of a quick succession of these events only the last one will be propagated. For example if a Created event is followed by two Changed events, and there is no time gap larger than 100 msec between these three events, only the second Changed event will be propagated by invoking the MyFileSystemWatcher_Event handler, and the previous ones will be discarded.


I wanted to react only on the last event, just in case, also on a linux file change it seemed that the file was empty on the first call and then filled again on the next and did not mind loosing some time just in case the OS decided to do some file/attribute change.

I am using .NET async here to help me do the threading.

    private static int _fileSystemWatcherCounts;
    private async void OnChanged(object sender, FileSystemEventArgs e)
    {
        // Filter several calls in short period of time
        Interlocked.Increment(ref _fileSystemWatcherCounts);
        await Task.Delay(100);
        if (Interlocked.Decrement(ref _fileSystemWatcherCounts) == 0)
            DoYourWork();
    }

Well, here is my solution how to raise an event only once:

FileSystemWatche? watcher = new FileSystemWatcher();

//'path' - path to the file that has been modified.
watcher.Changed += (s, e) => FileChanged(path);

here is implementation of FileChanged

//count is our counter to triger when we can raise and when not.
private int count = 0;
private void FileChanged(string path)
{
   if (count % 2 == 0)
     {
       //code here
     }

     count ++;
}

I approached the double create issue like this, which ignores the first event:

Private WithEvents fsw As New System.IO.FileSystemWatcher
Private complete As New List(Of String)

Private Sub fsw_Created(ByVal sender As Object, _
    ByVal e As System.IO.FileSystemEventArgs) Handles fsw.Created

    If Not complete.Contains(e.FullPath) Then
        complete.Add(e.FullPath)

    Else
        complete.Remove(e.FullPath)
        Dim th As New Threading.Thread(AddressOf hprocess)
        th.Start(e)

    End If

End Sub

I have changed the way I monitor files in directories. Instead of using the FileSystemWatcher I poll locations on another thread and then look at the LastWriteTime of the file.

DateTime lastWriteTime = File.GetLastWriteTime(someFilePath);

Using this information and keeping an index of a file path and it's latest write time I can determine files that have changed or that have been created in a particular location. This removes me from the oddities of the FileSystemWatcher. The main downside is that you need a data structure to store the LastWriteTime and the reference to the file, but it is reliable and easy to implement.


Try this, It's working fine

  private static readonly FileSystemWatcher Watcher = new FileSystemWatcher();
    static void Main(string[] args)
    {
        Console.WriteLine("Watching....");

        Watcher.Path = @"D:\Temp\Watcher";
        Watcher.Changed += OnChanged;
        Watcher.EnableRaisingEvents = true;
        Console.ReadKey();
    }

    static void OnChanged(object sender, FileSystemEventArgs e)
    {
        try
        {
            Watcher.Changed -= OnChanged;
            Watcher.EnableRaisingEvents = false;
            Console.WriteLine($"File Changed. Name: {e.Name}");
        }
        catch (Exception exception)
        {
            Console.WriteLine(exception);
        }
        finally
        {
            Watcher.Changed += OnChanged;
            Watcher.EnableRaisingEvents = true;
        }
    }

I had to combine several ideas from the posts above and add file locking check to get it working for me:

FileSystemWatcher fileSystemWatcher;

private void DirectoryWatcher_Start()
{
    FileSystemWatcher fileSystemWatcher = new FileSystemWatcher
    {
        Path = @"c:\mypath",
        NotifyFilter = NotifyFilters.LastWrite,
        Filter = "*.*",
        EnableRaisingEvents = true
    };

    fileSystemWatcher.Changed += new FileSystemEventHandler(DirectoryWatcher_OnChanged);
}

private static void WaitUntilFileIsUnlocked(String fullPath, Action<String> callback, FileAccess fileAccess = FileAccess.Read, Int32 timeoutMS = 10000)
{
    Int32 waitMS = 250;
    Int32 currentMS = 0;
    FileInfo file = new FileInfo(fullPath);
    FileStream stream = null;
    do
    {
        try
        {
            stream = file.Open(FileMode.Open, fileAccess, FileShare.None);
            stream.Close();
            callback(fullPath);
            return;
        }
        catch (IOException)
        {
        }
        finally
        {
            if (stream != null)
                stream.Dispose();
        }
        Thread.Sleep(waitMS);
        currentMS += waitMS;
    } while (currentMS < timeoutMS);
}    

private static Dictionary<String, DateTime> DirectoryWatcher_fileLastWriteTimeCache = new Dictionary<String, DateTime>();

private void DirectoryWatcher_OnChanged(Object source, FileSystemEventArgs ev)
{
    try
    {
        lock (DirectoryWatcher_fileLastWriteTimeCache)
        {
            DateTime lastWriteTime = File.GetLastWriteTime(ev.FullPath);
            if (DirectoryWatcher_fileLastWriteTimeCache.ContainsKey(ev.FullPath))
            {
                if (DirectoryWatcher_fileLastWriteTimeCache[ev.FullPath].AddMilliseconds(500) >= lastWriteTime)
                    return;     // file was already handled
            }

            DirectoryWatcher_fileLastWriteTimeCache[ev.FullPath] = lastWriteTime;
        }

        Task.Run(() => WaitUntilFileIsUnlocked(ev.FullPath, fullPath =>
        {
            // do the job with fullPath...
        }));

    }
    catch (Exception e)
    {
        // handle exception
    }
}

This solution worked for me on production application:

Environment:

VB.Net Framework 4.5.2

Set manually object properties: NotifyFilter = Size

Then use this code:

Public Class main
    Dim CalledOnce = False
    Private Sub FileSystemWatcher1_Changed(sender As Object, e As IO.FileSystemEventArgs) Handles FileSystemWatcher1.Changed
            If (CalledOnce = False) Then
                CalledOnce = True
                If (e.ChangeType = 4) Then
                    ' Do task...
                CalledOnce = False
            End If
        End Sub
End Sub

I think the best solution to solve the issue is to use reactive extensions When you transform event into observable, then you can just add Throttling(..) (originally called Debounce(..))

Sample code here

        var templatesWatcher = new FileSystemWatcher(settingsSnapshot.Value.TemplatesDirectory)
        {
            NotifyFilter = NotifyFilters.LastWrite,
            IncludeSubdirectories = true
        };

        templatesWatcher.EnableRaisingEvents = true;

        Observable.FromEventPattern<FileSystemEventHandler, FileSystemEventArgs>(
                addHandler => templatesWatcher.Changed += addHandler,
                removeHandler => templatesWatcher.Changed -= removeHandler)
            .Throttle(TimeSpan.FromSeconds(5))
            .Subscribe(args =>
            {
                _logger.LogInformation($"Template file {args.EventArgs.Name} has changed");
                //TODO do something
            });

Try this!

string temp="";

public void Initialize()
{
   FileSystemWatcher _fileWatcher = new FileSystemWatcher();
  _fileWatcher.Path = "C:\\Folder";
  _fileWatcher.NotifyFilter = NotifyFilters.LastWrite;
  _fileWatcher.Filter = "Version.txt";
  _fileWatcher.Changed += new FileSystemEventHandler(OnChanged);
  _fileWatcher.EnableRaisingEvents = true;
}

private void OnChanged(object source, FileSystemEventArgs e)
{
   .......
if(temp=="")
{
   //do thing you want.
   temp = e.name //name of text file.
}else if(temp !="" && temp != e.name)
{
   //do thing you want.
   temp = e.name //name of text file.
}else
{
  //second fire ignored.
}

}

mostly for future me :)

I wrote a wrapper using Rx:

 public class WatcherWrapper : IDisposable
{
    private readonly FileSystemWatcher _fileWatcher;
    private readonly Subject<FileSystemEventArgs> _infoSubject;
    private Subject<FileSystemEventArgs> _eventSubject;

    public WatcherWrapper(string path, string nameFilter = "*.*", NotifyFilters? notifyFilters = null)
    {
        _fileWatcher = new FileSystemWatcher(path, nameFilter);

        if (notifyFilters != null)
        {
            _fileWatcher.NotifyFilter = notifyFilters.Value;
        }

        _infoSubject = new Subject<FileSystemEventArgs>();
        _eventSubject = new Subject<FileSystemEventArgs>();

        Observable.FromEventPattern<FileSystemEventArgs>(_fileWatcher, "Changed").Select(e => e.EventArgs)
            .Subscribe(_infoSubject.OnNext);
        Observable.FromEventPattern<FileSystemEventArgs>(_fileWatcher, "Created").Select(e => e.EventArgs)
            .Subscribe(_infoSubject.OnNext);
        Observable.FromEventPattern<FileSystemEventArgs>(_fileWatcher, "Deleted").Select(e => e.EventArgs)
            .Subscribe(_infoSubject.OnNext);
        Observable.FromEventPattern<FileSystemEventArgs>(_fileWatcher, "Renamed").Select(e => e.EventArgs)
            .Subscribe(_infoSubject.OnNext);

        // this takes care of double events and still works with changing the name of the same file after a while
        _infoSubject.Buffer(TimeSpan.FromMilliseconds(20))
            .Select(x => x.GroupBy(z => z.FullPath).Select(z => z.LastOrDefault()).Subscribe(
                infos =>
                {
                    if (infos != null)
                        foreach (var info in infos)
                        {
                            {
                                _eventSubject.OnNext(info);
                            }
                        }
                });

        _fileWatcher.EnableRaisingEvents = true;
    }

    public IObservable<FileSystemEventArgs> FileEvents => _eventSubject;


    public void Dispose()
    {
        _fileWatcher?.Dispose();
        _eventSubject.Dispose();
        _infoSubject.Dispose();
    }
}

Usage:

var watcher = new WatcherWrapper(_path, "*.info");
// all more complicated and scenario specific filtering of events can be done here    
watcher.FileEvents.Where(x => x.ChangeType != WatcherChangeTypes.Deleted).Subscribe(x => //do stuff)

I have created a Git repo with a class that extends FileSystemWatcher to trigger the events only when copy is done. It discards all the changed events exept the last and it raise it only when the file become available for read.

Download FileSystemSafeWatcher and add it to your project.

Then use it as a normal FileSystemWatcher and monitor when the events are triggered.

var fsw = new FileSystemSafeWatcher(file);
fsw.EnableRaisingEvents = true;
// Add event handlers here
fsw.Created += fsw_Created;

Try with this code:

class WatchPlotDirectory
{
    bool let = false;
    FileSystemWatcher watcher;
    string path = "C:/Users/jamie/OneDrive/Pictures/Screenshots";

    public WatchPlotDirectory()
    {
        watcher = new FileSystemWatcher();
        watcher.Path = path;
        watcher.NotifyFilter = NotifyFilters.LastAccess | NotifyFilters.LastWrite
                               | NotifyFilters.FileName | NotifyFilters.DirectoryName;
        watcher.Filter = "*.*";
        watcher.Changed += new FileSystemEventHandler(OnChanged);
        watcher.Renamed += new RenamedEventHandler(OnRenamed);
        watcher.EnableRaisingEvents = true;
    }



    void OnChanged(object sender, FileSystemEventArgs e)
    {
        if (let==false) {
            string mgs = string.Format("File {0} | {1}",
                                       e.FullPath, e.ChangeType);
            Console.WriteLine("onchange: " + mgs);
            let = true;
        }

        else
        {
            let = false;
        }


    }

    void OnRenamed(object sender, RenamedEventArgs e)
    {
        string log = string.Format("{0} | Renamed from {1}",
                                   e.FullPath, e.OldName);
        Console.WriteLine("onrenamed: " + log);

    }

    public void setPath(string path)
    {
        this.path = path;
    }
}

Here is my solution which helped me to stop the event being raised twice:

watcher.NotifyFilter = NotifyFilters.FileName | NotifyFilters.Size;

Here I have set the NotifyFilter property with only Filename and size.
watcher is my object of FileSystemWatcher. Hope this will help.


Sorry for the grave dig, but I've been battling this issue for a while now and finally came up with a way to handle these multiple fired events. I would like to thank everyone in this thread as I have used it in many references when battling this issue.

Here is my complete code. It uses a dictionary to track the date and time of the last write of the file. It compares that value, and if it is the same, it suppresses the events. It then sets the value after starting the new thread.

using System.Threading; // used for backgroundworker
using System.Diagnostics; // used for file information
private static IDictionary<string, string> fileModifiedTable = new Dictionary<string, string>(); // used to keep track of our changed events

private void fswFileWatch_Changed( object sender, FileSystemEventArgs e )
    {
        try
        {
           //check if we already have this value in our dictionary.
            if ( fileModifiedTable.TryGetValue( e.FullPath, out sEmpty ) )
            {              
                //compare timestamps      
                if ( fileModifiedTable[ e.FullPath ] != File.GetLastWriteTime( e.FullPath ).ToString() )
                {        
                    //lock the table                
                    lock ( fileModifiedTable )
                    {
                        //make sure our file is still valid
                        if ( File.Exists( e.FullPath ) )
                        {                               
                            // create a new background worker to do our task while the main thread stays awake. Also give it do work and work completed handlers
                            BackgroundWorker newThreadWork = new BackgroundWorker();
                            newThreadWork.DoWork += new DoWorkEventHandler( bgwNewThread_DoWork );
                            newThreadWork.RunWorkerCompleted += new RunWorkerCompletedEventHandler( bgwNewThread_RunWorkerCompleted );

                            // capture the path
                            string eventFilePath = e.FullPath;
                            List<object> arguments = new List<object>();

                            // add arguments to pass to the background worker
                            arguments.Add( eventFilePath );
                            arguments.Add( newEvent.File_Modified );

                            // start the new thread with the arguments
                            newThreadWork.RunWorkerAsync( arguments );

                            fileModifiedTable[ e.FullPath ] = File.GetLastWriteTime( e.FullPath ).ToString(); //update the modified table with the new timestamp of the file.
                            FILE_MODIFIED_FLAG.WaitOne(); // wait for the modified thread to complete before firing the next thread in the event multiple threads are being worked on.
                        }
                    }
                }
            }
        }
        catch ( IOException IOExcept )
        {
            //catch any errors
            postError( IOExcept, "fswFileWatch_Changed" );
        }
    }

The solution really depends on the use case. Are you watching out for new files that don't change, or one file that changes every once in a while, of changes very often? In my case, it changes not too often, and I don't want to miss any of these changes.

But I also do not want the change event where the writing process is not yet done writing.

In my case, I noticed 6 (six!!) onchange events on writing a 125 char txt file.

My solution is a mix of polling, that is often looked negatively at, and the change-event. Normal polling is slow, say every 10 seconds, just in case the FileSystemWatcher (FSW) "misses" an event. The polling responds immediately to a FSW change event.

The trick is that at a FSW.Change event, the polling goes faster, say every 100 ms, and waits until the file is stable. So we have "two phased polling": phase 1 is slow, but responds immediately on a FSW file change event. Phase 2 is fast, waiting for a stable file.

If the FSW detects multiple file changes, each of those events speeds up the polling loop, and will effectively start a new, short, waiting cycle. Only after the polling loop detects no further change in file last write time, it assumes that the file is stable, and your code may handle the changed file.

I chose timeouts of 10 seconds and 100 ms, but your use case may need different timeout values.

Here is the polling, where AppConfig.fiIO is the FileInfo to watch for:

private readonly EventWaitHandle ewhTimeout = new AutoResetEvent(false);

private void TwoPhasedPolling()
{
    bool WaitForChange = true; //false: wait until stable
    DateTime LastWriteTime = DateTime.MinValue;
    while (true)
    {
        // wait for next poll (timeout), or FSW event
        bool GotOne = ewhTimeout.WaitOne(WaitForChange ? 10 * 1000 : 100);
        if (GotOne)
        {
            // WaitOne interrupted: end of Phase1: FSW detected file change
            WaitForChange = false;
        }
        else
        {
            // WaitOne timed out: Phase2: check file write time for change
            if (AppConfig.fiIO.LastWriteTime > LastWriteTime)
            {
                LastWriteTime = AppConfig.fiIO.LastWriteTime;
            }
            else
            {
                // End of Phase2: file has changed and is stable
                WaitForChange = true;
                // action on changed file
                ... your code here ...
            }}}}

private void fileSystemWatcher1_Changed(object sender, FileSystemEventArgs e)
{
    ewhTimeout.Set();
}

NB: yes, I don't like }}}} either, but it makes the listing shorter so that you don't have to scroll :-)