The optimal algorithm uses n+log n-2 comparisons. Think of elements as competitors, and a tournament is going to rank them.
First, compare the elements, as in the tree
|
/ \
| |
/ \ / \
x x x x
this takes n-1 comparisons and each element is involved in comparison at most log n times. You will find the largest element as the winner.
The second largest element must have lost a match to the winner (he can't lose a match to a different element), so he's one of the log n elements the winner has played against. You can find which of them using log n - 1 comparisons.
The optimality is proved via adversary argument. See https://math.stackexchange.com/questions/1601 or http://compgeom.cs.uiuc.edu/~jeffe/teaching/497/02-selection.pdf or http://www.imada.sdu.dk/~jbj/DM19/lb06.pdf or https://www.utdallas.edu/~chandra/documents/6363/lbd.pdf