[matlab] How to normalize a histogram in MATLAB?

Since 2014b, Matlab has these normalization routines embedded natively in the histogram function (see the help file for the 6 routines this function offers). Here is an example using the PDF normalization (the sum of all the bins is 1).

data = 2*randn(5000,1) + 5;             % generate normal random (m=5, std=2)
h = histogram(data,'Normalization','pdf')   % PDF normalization

The corresponding PDF is

Nbins = h.NumBins;
edges = h.BinEdges; 
x = zeros(1,Nbins);
for counter=1:Nbins
    midPointShift = abs(edges(counter)-edges(counter+1))/2;
    x(counter) = edges(counter)+midPointShift;
end

mu = mean(data);
sigma = std(data);

f = exp(-(x-mu).^2./(2*sigma^2))./(sigma*sqrt(2*pi));

The two together gives

hold on;
plot(x,f,'LineWidth',1.5)

enter image description here

An improvement that might very well be due to the success of the actual question and accepted answer!


EDIT - The use of hist and histc is not recommended now, and histogram should be used instead. Beware that none of the 6 ways of creating bins with this new function will produce the bins hist and histc produce. There is a Matlab script to update former code to fit the way histogram is called (bin edges instead of bin centers - link). By doing so, one can compare the pdf normalization methods of @abcd (trapz and sum) and Matlab (pdf).

The 3 pdf normalization method give nearly identical results (within the range of eps).

TEST:

A = randn(10000,1);
centers = -6:0.5:6;
d = diff(centers)/2;
edges = [centers(1)-d(1), centers(1:end-1)+d, centers(end)+d(end)];
edges(2:end) = edges(2:end)+eps(edges(2:end));

figure;
subplot(2,2,1);
hist(A,centers);
title('HIST not normalized');

subplot(2,2,2);
h = histogram(A,edges);
title('HISTOGRAM not normalized');

subplot(2,2,3)
[counts, centers] = hist(A,centers); %get the count with hist
bar(centers,counts/trapz(centers,counts))
title('HIST with PDF normalization');


subplot(2,2,4)
h = histogram(A,edges,'Normalization','pdf')
title('HISTOGRAM with PDF normalization');

dx = diff(centers(1:2))
normalization_difference_trapz = abs(counts/trapz(centers,counts) - h.Values);
normalization_difference_sum = abs(counts/sum(counts*dx) - h.Values);

max(normalization_difference_trapz)
max(normalization_difference_sum)

enter image description here

The maximum difference between the new PDF normalization and the former one is 5.5511e-17.