[python] How to use timeit module

I'll let you in on a secret: the best way to use timeit is on the command line.

On the command line, timeit does proper statistical analysis: it tells you how long the shortest run took. This is good because all error in timing is positive. So the shortest time has the least error in it. There's no way to get negative error because a computer can't ever compute faster than it can compute!

So, the command-line interface:

%~> python -m timeit "1 + 2"
10000000 loops, best of 3: 0.0468 usec per loop

That's quite simple, eh?

You can set stuff up:

%~> python -m timeit -s "x = range(10000)" "sum(x)"
1000 loops, best of 3: 543 usec per loop

which is useful, too!

If you want multiple lines, you can either use the shell's automatic continuation or use separate arguments:

%~> python -m timeit -s "x = range(10000)" -s "y = range(100)" "sum(x)" "min(y)"
1000 loops, best of 3: 554 usec per loop

That gives a setup of

x = range(1000)
y = range(100)

and times

sum(x)
min(y)

If you want to have longer scripts you might be tempted to move to timeit inside a Python script. I suggest avoiding that because the analysis and timing is simply better on the command line. Instead, I tend to make shell scripts:

 SETUP="

 ... # lots of stuff

 "

 echo Minmod arr1
 python -m timeit -s "$SETUP" "Minmod(arr1)"

 echo pure_minmod arr1
 python -m timeit -s "$SETUP" "pure_minmod(arr1)"

 echo better_minmod arr1
 python -m timeit -s "$SETUP" "better_minmod(arr1)"

 ... etc

This can take a bit longer due to the multiple initialisations, but normally that's not a big deal.


But what if you want to use timeit inside your module?

Well, the simple way is to do:

def function(...):
    ...

timeit.Timer(function).timeit(number=NUMBER)

and that gives you cumulative (not minimum!) time to run that number of times.

To get a good analysis, use .repeat and take the minimum:

min(timeit.Timer(function).repeat(repeat=REPEATS, number=NUMBER))

You should normally combine this with functools.partial instead of lambda: ... to lower overhead. Thus you could have something like:

from functools import partial

def to_time(items):
    ...

test_items = [1, 2, 3] * 100
times = timeit.Timer(partial(to_time, test_items)).repeat(3, 1000)

# Divide by the number of repeats
time_taken = min(times) / 1000

You can also do:

timeit.timeit("...", setup="from __main__ import ...", number=NUMBER)

which would give you something closer to the interface from the command-line, but in a much less cool manner. The "from __main__ import ..." lets you use code from your main module inside the artificial environment created by timeit.

It's worth noting that this is a convenience wrapper for Timer(...).timeit(...) and so isn't particularly good at timing. I personally far prefer using Timer(...).repeat(...) as I've shown above.


Warnings

There are a few caveats with timeit that hold everywhere.

  • Overhead is not accounted for. Say you want to time x += 1, to find out how long addition takes:

    >>> python -m timeit -s "x = 0" "x += 1"
    10000000 loops, best of 3: 0.0476 usec per loop
    

    Well, it's not 0.0476 µs. You only know that it's less than that. All error is positive.

    So try and find pure overhead:

    >>> python -m timeit -s "x = 0" ""      
    100000000 loops, best of 3: 0.014 usec per loop
    

    That's a good 30% overhead just from timing! This can massively skew relative timings. But you only really cared about the adding timings; the look-up timings for x also need to be included in overhead:

    >>> python -m timeit -s "x = 0" "x"
    100000000 loops, best of 3: 0.0166 usec per loop
    

    The difference isn't much larger, but it's there.

  • Mutating methods are dangerous.

    >>> python -m timeit -s "x = [0]*100000" "while x: x.pop()"
    10000000 loops, best of 3: 0.0436 usec per loop
    

    But that's completely wrong! x is the empty list after the first iteration. You'll need to reinitialize:

    >>> python -m timeit "x = [0]*100000" "while x: x.pop()"
    100 loops, best of 3: 9.79 msec per loop
    

    But then you have lots of overhead. Account for that separately.

    >>> python -m timeit "x = [0]*100000"                   
    1000 loops, best of 3: 261 usec per loop
    

    Note that subtracting the overhead is reasonable here only because the overhead is a small-ish fraction of the time.

    For your example, it's worth noting that both Insertion Sort and Tim Sort have completely unusual timing behaviours for already-sorted lists. This means you will require a random.shuffle between sorts if you want to avoid wrecking your timings.

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to time

Date to milliseconds and back to date in Swift How to manage Angular2 "expression has changed after it was checked" exception when a component property depends on current datetime how to sort pandas dataframe from one column Convert time.Time to string How to get current time in python and break up into year, month, day, hour, minute? Xcode swift am/pm time to 24 hour format How to add/subtract time (hours, minutes, etc.) from a Pandas DataFrame.Index whos objects are of type datetime.time? What does this format means T00:00:00.000Z? How can I parse / create a date time stamp formatted with fractional seconds UTC timezone (ISO 8601, RFC 3339) in Swift? Extract time from moment js object

Examples related to timeit

How to use timeit module How to measure elapsed time in Python? Creating an empty list in Python How can I time a code segment for testing performance with Pythons timeit?