The reason of such behaviour is that the string that is printed is the exact value - probably not what you expected, but that's the real value stored in memory - it's just a limitation of floating point representation.
According to javadoc, BigDecimal(double val) constructor behaviour can be unexpected if you don't take into consideration this limitation:
The results of this constructor can be somewhat unpredictable. One might assume that writing new BigDecimal(0.1) in Java creates a BigDecimal which is exactly equal to 0.1 (an unscaled value of 1, with a scale of 1), but it is actually equal to 0.1000000000000000055511151231257827021181583404541015625. This is because 0.1 cannot be represented exactly as a double (or, for that matter, as a binary fraction of any finite length). Thus, the value that is being passed in to the constructor is not exactly equal to 0.1, appearances notwithstanding.
So in your case, instead of using
double val = 77.48;
new BigDecimal(val);
use
BigDecimal.valueOf(val);
Value that is returned by BigDecimal.valueOf is equal to that resulting from invocation of Double.toString(double)
.