Assuming that the program cannot be redesigned to avoid the cast (ref. Keith Thomson's answer):
To cast from size_t to int you need to ensure that the size_t does not exceed the maximum value of the int. This can be done using std::numeric_limits:
int SizeTToInt(size_t data)
{
if (data > std::numeric_limits<int>::max())
throw std::exception("Invalid cast.");
return std::static_cast<int>(data);
}
If you need to cast from size_t to double, and you need to ensure that you don't lose precision, I think you can use a narrow cast (ref. Stroustrup: The C++ Programming Language, Fourth Edition):
template<class Target, class Source>
Target NarrowCast(Source v)
{
auto r = static_cast<Target>(v);
if (static_cast<Source>(r) != v)
throw RuntimeError("Narrow cast failed.");
return r;
}
I tested using the narrow cast for size_t-to-double conversions by inspecting the limits of the maximum integers floating-point-representable integers (code uses googletest):
EXPECT_EQ(static_cast<size_t>(NarrowCast<double>(size_t{ IntegerRepresentableBoundary() - 2 })), size_t{ IntegerRepresentableBoundary() - 2 });
EXPECT_EQ(static_cast<size_t>(NarrowCast<double>(size_t{ IntegerRepresentableBoundary() - 1 })), size_t{ IntegerRepresentableBoundary() - 1 });
EXPECT_EQ(static_cast<size_t>(NarrowCast<double>(size_t{ IntegerRepresentableBoundary() })), size_t{ IntegerRepresentableBoundary() });
EXPECT_THROW(NarrowCast<double>(size_t{ IntegerRepresentableBoundary() + 1 }), std::exception);
EXPECT_EQ(static_cast<size_t>(NarrowCast<double>(size_t{ IntegerRepresentableBoundary() + 2 })), size_t{ IntegerRepresentableBoundary() + 2 });
EXPECT_THROW(NarrowCast<double>(size_t{ IntegerRepresentableBoundary() + 3 }), std::exception);
EXPECT_EQ(static_cast<size_t>(NarrowCast<double>(size_t{ IntegerRepresentableBoundary() + 4 })), size_t{ IntegerRepresentableBoundary() + 4 });
EXPECT_THROW(NarrowCast<double>(size_t{ IntegerRepresentableBoundary() + 5 }), std::exception);
where
constexpr size_t IntegerRepresentableBoundary()
{
static_assert(std::numeric_limits<double>::radix == 2, "Method only valid for binary floating point format.");
return size_t{2} << (std::numeric_limits<double>::digits - 1);
}
That is, if N is the number of digits in the mantissa, for doubles smaller than or equal to 2^N, integers can be exactly represented. For doubles between 2^N and 2^(N+1), every other integer can be exactly represented. For doubles between 2^(N+1) and 2^(N+2) every fourth integer can be exactly represented, and so on.