Pandas (and numpy) allow for boolean indexing, which will be much more efficient:
In [11]: df.loc[df['col1'] >= 1, 'col1']
Out[11]:
1 1
2 2
Name: col1
In [12]: df[df['col1'] >= 1]
Out[12]:
col1 col2
1 1 11
2 2 12
In [13]: df[(df['col1'] >= 1) & (df['col1'] <=1 )]
Out[13]:
col1 col2
1 1 11
If you want to write helper functions for this, consider something along these lines:
In [14]: def b(x, col, op, n):
return op(x[col],n)
In [15]: def f(x, *b):
return x[(np.logical_and(*b))]
In [16]: b1 = b(df, 'col1', ge, 1)
In [17]: b2 = b(df, 'col1', le, 1)
In [18]: f(df, b1, b2)
Out[18]:
col1 col2
1 1 11
Update: pandas 0.13 has a query method for these kind of use cases, assuming column names are valid identifiers the following works (and can be more efficient for large frames as it uses numexpr behind the scenes):
In [21]: df.query('col1 <= 1 & 1 <= col1')
Out[21]:
col1 col2
1 1 11
~ Answered on 2012-11-28 23:38:41