[hadoop] When to use Hadoop, HBase, Hive and Pig?

MapReduce is just a computing framework. HBase has nothing to do with it. That said, you can efficiently put or fetch data to/from HBase by writing MapReduce jobs. Alternatively you can write sequential programs using other HBase APIs, such as Java, to put or fetch the data. But we use Hadoop, HBase etc to deal with gigantic amounts of data, so that doesn't make much sense. Using normal sequential programs would be highly inefficient when your data is too huge.

Coming back to the first part of your question, Hadoop is basically 2 things: a Distributed FileSystem (HDFS) + a Computation or Processing framework (MapReduce). Like all other FS, HDFS also provides us storage, but in a fault tolerant manner with high throughput and lower risk of data loss (because of the replication). But, being a FS, HDFS lacks random read and write access. This is where HBase comes into picture. It's a distributed, scalable, big data store, modelled after Google's BigTable. It stores data as key/value pairs.

Coming to Hive. It provides us data warehousing facilities on top of an existing Hadoop cluster. Along with that it provides an SQL like interface which makes your work easier, in case you are coming from an SQL background. You can create tables in Hive and store data there. Along with that you can even map your existing HBase tables to Hive and operate on them.

While Pig is basically a dataflow language that allows us to process enormous amounts of data very easily and quickly. Pig basically has 2 parts: the Pig Interpreter and the language, PigLatin. You write Pig script in PigLatin and using Pig interpreter process them. Pig makes our life a lot easier, otherwise writing MapReduce is always not easy. In fact in some cases it can really become a pain.

I had written an article on a short comparison of different tools of the Hadoop ecosystem some time ago. It's not an in depth comparison, but a short intro to each of these tools which can help you to get started. (Just to add on to my answer. No self promotion intended)

Both Hive and Pig queries get converted into MapReduce jobs under the hood.

HTH

Examples related to hadoop

Hadoop MapReduce: Strange Result when Storing Previous Value in Memory in a Reduce Class (Java) What is the difference between spark.sql.shuffle.partitions and spark.default.parallelism? How to check Spark Version What are the pros and cons of parquet format compared to other formats? java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient How to export data from Spark SQL to CSV How to copy data from one HDFS to another HDFS? How to calculate Date difference in Hive Select top 2 rows in Hive Spark - load CSV file as DataFrame?

Examples related to hbase

When to use Hadoop, HBase, Hive and Pig? Hive load CSV with commas in quoted fields Hbase quickly count number of rows How to delete all data from solr and hbase

Examples related to hive

select rows in sql with latest date for each ID repeated multiple times PySpark: withColumn() with two conditions and three outcomes java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient Hive cast string to date dd-MM-yyyy How to save DataFrame directly to Hive? How to calculate Date difference in Hive Select top 2 rows in Hive Just get column names from hive table Create hive table using "as select" or "like" and also specify delimiter Hive Alter table change Column Name

Examples related to apache-pig

When to use Hadoop, HBase, Hive and Pig? PIG how to count a number of rows in alias Difference between Pig and Hive? Why have both?