In a similar vein, when reading a file, one may wish to exclude columns upfront, rather than wastefully reading unwanted data into memory and later discarding them.
As of pandas 0.20.0, usecols
now accepts callables.1 This update allows more flexible options for reading columns:
skipcols = [...]
read_csv(..., usecols=lambda x: x not in skipcols)
The latter pattern is essentially the inverse of the traditional usecols
method - only specified columns are skipped.
Given
Data in a file
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(100, 4), columns=list('ABCD'))
filename = "foo.csv"
df.to_csv(filename)
Code
skipcols = ["B", "D"]
df1 = pd.read_csv(filename, usecols=lambda x: x not in skipcols, index_col=0)
df1
Output
A C
0 0.062350 0.076924
1 -0.016872 1.091446
2 0.213050 1.646109
3 -1.196928 1.153497
4 -0.628839 -0.856529
...
Details
A DataFrame was written to a file. It was then read back as a separate DataFrame, now skipping unwanted columns (B
and D
).
Note that for the OP's situation, since data is already created, the better approach is the accepted answer, which drops unwanted columns from an extant object. However, the technique presented here is most useful when directly reading data from files into a DataFrame.
A request was raised for a "skipcols" option in this issue and was addressed in a later issue.