Set theory is inappropriate for lists since duplicates will result in wrong answers using set theory.
For example:
a = [1, 3, 3, 3, 5]
b = [1, 3, 3, 4, 5]
set(b) > set(a)
has no meaning. Yes, it gives a false answer but this is not correct since set theory is just comparing: 1,3,5 versus 1,3,4,5. You must include all duplicates.
Instead you must count each occurrence of each item and do a greater than equal to check. This is not very expensive, because it is not using O(N^2) operations and does not require quick sort.
#!/usr/bin/env python
from collections import Counter
def containedInFirst(a, b):
a_count = Counter(a)
b_count = Counter(b)
for key in b_count:
if a_count.has_key(key) == False:
return False
if b_count[key] > a_count[key]:
return False
return True
a = [1, 3, 3, 3, 5]
b = [1, 3, 3, 4, 5]
print "b in a: ", containedInFirst(a, b)
a = [1, 3, 3, 3, 4, 4, 5]
b = [1, 3, 3, 4, 5]
print "b in a: ", containedInFirst(a, b)
Then running this you get:
$ python contained.py
b in a: False
b in a: True