You can read existing sheets of your interests, for example, 'x1', 'x2', into memory and 'write' them back prior to adding more new sheets (keep in mind that sheets in a file and sheets in memory are two different things, if you don't read them, they will be lost). This approach uses 'xlsxwriter' only, no openpyxl involved.
import pandas as pd
import numpy as np
path = r"C:\Users\fedel\Desktop\excelData\PhD_data.xlsx"
# begin <== read selected sheets and write them back
df1 = pd.read_excel(path, sheet_name='x1', index_col=0) # or sheet_name=0
df2 = pd.read_excel(path, sheet_name='x2', index_col=0) # or sheet_name=1
writer = pd.ExcelWriter(path, engine='xlsxwriter')
df1.to_excel(writer, sheet_name='x1')
df2.to_excel(writer, sheet_name='x2')
# end ==>
# now create more new sheets
x3 = np.random.randn(100, 2)
df3 = pd.DataFrame(x3)
x4 = np.random.randn(100, 2)
df4 = pd.DataFrame(x4)
df3.to_excel(writer, sheet_name='x3')
df4.to_excel(writer, sheet_name='x4')
writer.save()
writer.close()
If you want to preserve all existing sheets, you can replace above code between begin and end with:
# read all existing sheets and write them back
writer = pd.ExcelWriter(path, engine='xlsxwriter')
xlsx = pd.ExcelFile(path)
for sheet in xlsx.sheet_names:
df = xlsx.parse(sheet_name=sheet, index_col=0)
df.to_excel(writer, sheet_name=sheet)