A very direct way is to just use read.table
on your character vector:
> read.table(text = text, sep = ".", colClasses = "character")
V1 V2 V3 V4
1 F US CLE V13
2 F US CA6 U13
3 F US CA6 U13
4 F US CA6 U13
5 F US CA6 U13
6 F US CA6 U13
7 F US CA6 U13
8 F US CA6 U13
9 F US DL U13
10 F US DL U13
11 F US DL U13
12 F US DL Z13
13 F US DL Z13
colClasses
needs to be specified, otherwise F
gets converted to FALSE
(which is something I need to fix in "splitstackshape", otherwise I would have recommended that :) )
Alternatively, you can use my cSplit
function, like this:
cSplit(as.data.table(text), "text", ".")
# text_1 text_2 text_3 text_4
# 1: F US CLE V13
# 2: F US CA6 U13
# 3: F US CA6 U13
# 4: F US CA6 U13
# 5: F US CA6 U13
# 6: F US CA6 U13
# 7: F US CA6 U13
# 8: F US CA6 U13
# 9: F US DL U13
# 10: F US DL U13
# 11: F US DL U13
# 12: F US DL Z13
# 13: F US DL Z13
Or, separate
from "tidyr", like this:
library(dplyr)
library(tidyr)
as.data.frame(text) %>% separate(text, into = paste("V", 1:4, sep = "_"))
# V_1 V_2 V_3 V_4
# 1 F US CLE V13
# 2 F US CA6 U13
# 3 F US CA6 U13
# 4 F US CA6 U13
# 5 F US CA6 U13
# 6 F US CA6 U13
# 7 F US CA6 U13
# 8 F US CA6 U13
# 9 F US DL U13
# 10 F US DL U13
# 11 F US DL U13
# 12 F US DL Z13
# 13 F US DL Z13