Statsmodels kan build an OLS model with column references directly to a pandas dataframe.
Short and sweet:
model = sm.OLS(df[y], df[x]).fit()
Code details and regression summary:
# imports
import pandas as pd
import statsmodels.api as sm
import numpy as np
# data
np.random.seed(123)
df = pd.DataFrame(np.random.randint(0,100,size=(100, 3)), columns=list('ABC'))
# assign dependent and independent / explanatory variables
variables = list(df.columns)
y = 'A'
x = [var for var in variables if var not in y ]
# Ordinary least squares regression
model_Simple = sm.OLS(df[y], df[x]).fit()
# Add a constant term like so:
model = sm.OLS(df[y], sm.add_constant(df[x])).fit()
model.summary()
Output:
OLS Regression Results
==============================================================================
Dep. Variable: A R-squared: 0.019
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.9409
Date: Thu, 14 Feb 2019 Prob (F-statistic): 0.394
Time: 08:35:04 Log-Likelihood: -484.49
No. Observations: 100 AIC: 975.0
Df Residuals: 97 BIC: 982.8
Df Model: 2
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 43.4801 8.809 4.936 0.000 25.996 60.964
B 0.1241 0.105 1.188 0.238 -0.083 0.332
C -0.0752 0.110 -0.681 0.497 -0.294 0.144
==============================================================================
Omnibus: 50.990 Durbin-Watson: 2.013
Prob(Omnibus): 0.000 Jarque-Bera (JB): 6.905
Skew: 0.032 Prob(JB): 0.0317
Kurtosis: 1.714 Cond. No. 231.
==============================================================================
How to directly get R-squared, Coefficients and p-value:
# commands:
model.params
model.pvalues
model.rsquared
# demo:
In[1]:
model.params
Out[1]:
const 43.480106
B 0.124130
C -0.075156
dtype: float64
In[2]:
model.pvalues
Out[2]:
const 0.000003
B 0.237924
C 0.497400
dtype: float64
Out[3]:
model.rsquared
Out[2]:
0.0190