[python] Finding non-numeric rows in dataframe in pandas?

Already some great answers to this question, however here is a nice snippet that I use regularly to drop rows if they have non-numeric values on some columns:

# Eliminate invalid data from dataframe (see Example below for more context)

num_df = (df.drop(data_columns, axis=1)
         .join(df[data_columns].apply(pd.to_numeric, errors='coerce')))

num_df = num_df[num_df[data_columns].notnull().all(axis=1)]

The way this works is we first drop all the data_columns from the df, and then use a join to put them back in after passing them through pd.to_numeric (with option 'coerce', such that all non-numeric entries are converted to NaN). The result is saved to num_df.

On the second line we use a filter that keeps only rows where all values are not null.

Note that pd.to_numeric is coercing to NaN everything that cannot be converted to a numeric value, so strings that represent numeric values will not be removed. For example '1.25' will be recognized as the numeric value 1.25.

Disclaimer: pd.to_numeric was introduced in pandas version 0.17.0

Example:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({"item": ["a", "b", "c", "d", "e"],
   ...:                    "a": [1,2,3,"bad",5],
   ...:                    "b":[0.1,0.2,0.3,0.4,0.5]})

In [3]: df
Out[3]: 
     a    b item
0    1  0.1    a
1    2  0.2    b
2    3  0.3    c
3  bad  0.4    d
4    5  0.5    e

In [4]: data_columns = ['a', 'b']

In [5]: num_df = (df
   ...:           .drop(data_columns, axis=1)
   ...:           .join(df[data_columns].apply(pd.to_numeric, errors='coerce')))

In [6]: num_df
Out[6]: 
  item   a    b
0    a   1  0.1
1    b   2  0.2
2    c   3  0.3
3    d NaN  0.4
4    e   5  0.5

In [7]: num_df[num_df[data_columns].notnull().all(axis=1)]
Out[7]: 
  item  a    b
0    a  1  0.1
1    b  2  0.2
2    c  3  0.3
4    e  5  0.5

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to pandas

xlrd.biffh.XLRDError: Excel xlsx file; not supported Pandas Merging 101 How to increase image size of pandas.DataFrame.plot in jupyter notebook? Trying to merge 2 dataframes but get ValueError Python Pandas User Warning: Sorting because non-concatenation axis is not aligned How to show all of columns name on pandas dataframe? Pandas/Python: Set value of one column based on value in another column Python Pandas - Find difference between two data frames Pandas get the most frequent values of a column Python convert object to float

Examples related to dataframe

Trying to merge 2 dataframes but get ValueError How to show all of columns name on pandas dataframe? Python Pandas - Find difference between two data frames Pandas get the most frequent values of a column Display all dataframe columns in a Jupyter Python Notebook How to convert column with string type to int form in pyspark data frame? Display/Print one column from a DataFrame of Series in Pandas Binning column with python pandas Selection with .loc in python Set value to an entire column of a pandas dataframe