[python] why should I make a copy of a data frame in pandas

The primary purpose is to avoid chained indexing and eliminate the SettingWithCopyWarning.

Here chained indexing is something like dfc['A'][0] = 111

The document said chained indexing should be avoided in Returning a view versus a copy. Here is a slightly modified example from that document:

In [1]: import pandas as pd

In [2]: dfc = pd.DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})

In [3]: dfc
Out[3]:
    A   B
0   aaa 1
1   bbb 2
2   ccc 3

In [4]: aColumn = dfc['A']

In [5]: aColumn[0] = 111
SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

In [6]: dfc
Out[6]:
    A   B
0   111 1
1   bbb 2
2   ccc 3

Here the aColumn is a view and not a copy from the original DataFrame, so modifying aColumn will cause the original dfc be modified too. Next, if we index the row first:

In [7]: zero_row = dfc.loc[0]

In [8]: zero_row['A'] = 222
SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

In [9]: dfc
Out[9]:
    A   B
0   111 1
1   bbb 2
2   ccc 3

This time zero_row is a copy, so the original dfc is not modified.

From these two examples above, we see it's ambiguous whether or not you want to change the original DataFrame. This is especially dangerous if you write something like the following:

In [10]: dfc.loc[0]['A'] = 333
SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

In [11]: dfc
Out[11]:
    A   B
0   111 1
1   bbb 2
2   ccc 3

This time it didn't work at all. Here we wanted to change dfc, but we actually modified an intermediate value dfc.loc[0] that is a copy and is discarded immediately. It’s very hard to predict whether the intermediate value like dfc.loc[0] or dfc['A'] is a view or a copy, so it's not guaranteed whether or not original DataFrame will be updated. That's why chained indexing should be avoided, and pandas generates the SettingWithCopyWarning for this kind of chained indexing update.

Now is the use of .copy(). To eliminate the warning, make a copy to express your intention explicitly:

In [12]: zero_row_copy = dfc.loc[0].copy()

In [13]: zero_row_copy['A'] = 444 # This time no warning

Since you are modifying a copy, you know the original dfc will never change and you are not expecting it to change. Your expectation matches the behavior, then the SettingWithCopyWarning disappears.

Note, If you do want to modify the original DataFrame, the document suggests you use loc:

In [14]: dfc.loc[0,'A'] = 555

In [15]: dfc
Out[15]:
    A   B
0   555 1
1   bbb 2
2   ccc 3

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to pandas

xlrd.biffh.XLRDError: Excel xlsx file; not supported Pandas Merging 101 How to increase image size of pandas.DataFrame.plot in jupyter notebook? Trying to merge 2 dataframes but get ValueError Python Pandas User Warning: Sorting because non-concatenation axis is not aligned How to show all of columns name on pandas dataframe? Pandas/Python: Set value of one column based on value in another column Python Pandas - Find difference between two data frames Pandas get the most frequent values of a column Python convert object to float

Examples related to chained-assignment

Extracting specific selected columns to new DataFrame as a copy Python: Pandas Dataframe how to multiply entire column with a scalar why should I make a copy of a data frame in pandas How to deal with SettingWithCopyWarning in Pandas Adding new column to existing DataFrame in Python pandas